예제 #1
0
def test(flags, ep, ds, lr, save_dir):
    # set gpu
    os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
    os.environ['CUDA_VISIBLE_DEVICES'] = flags.GPU
    # environment settings
    np.random.seed(flags.random_seed)
    tf.set_random_seed(flags.random_seed)

    # data prepare step
    Data = rsrClassData(flags.rsr_data_dir)
    (collect_files_test, meta_test) = Data.getCollectionByName(flags.test_data_dir)

    # image reader
    coord = tf.train.Coordinator()

    # define place holder
    X = tf.placeholder(tf.float32, shape=[None, flags.input_size[0], flags.input_size[1], 3], name='X')
    y = tf.placeholder(tf.int32, shape=[None, flags.input_size[0], flags.input_size[1], 1], name='y')
    mode = tf.placeholder(tf.bool, name='mode')

    # initialize model
    flags.model_name = 'ResUnetShrinkInria_fr_resample_mean_reduced_EP-{}_DS-{}.0_LR-{}'.format(ep, ds, lr)
    model = unet.ResUnetModel_shrink({'X':X, 'Y':y}, trainable=mode, model_name=flags.model_name, input_size=flags.input_size)
    model.create_graph('X', flags.num_classes)
    model.make_update_ops('X', 'Y')
    # set ckdir
    model.make_ckdir(flags.ckdir)
    # set up graph and initialize
    config = tf.ConfigProto()

    # run training
    start_time = time.time()
    with tf.Session(config=config) as sess:
        init = tf.global_variables_initializer()
        sess.run(init)

        saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=1)

        if os.path.exists(model.ckdir) and tf.train.get_checkpoint_state(model.ckdir):
            latest_check_point = tf.train.latest_checkpoint(model.ckdir)
            saver.restore(sess, latest_check_point)
            print('loaded {}'.format(latest_check_point))

        threads = tf.train.start_queue_runners(coord=coord, sess=sess)
        try:
            iou_record = {}
            for (image_name, label_name) in collect_files_test:
                c_names = flags.city_name.split(',')
                for c_name in c_names:
                    if c_name in image_name:
                        city_name = re.findall('[a-z\-]*(?=[0-9]+\.)', image_name)[0]
                        tile_id = re.findall('[0-9]+(?=\.tif)', image_name)[0]

                        # load reader
                        iterator_test = image_reader.image_label_iterator(
                            os.path.join(flags.rsr_data_dir, image_name),
                            batch_size=flags.batch_size,
                            tile_dim=meta_test['dim_image'][:2],
                            patch_size=flags.input_size,
                            overlap=0, padding=0,
                            image_mean=IMG_MEAN)
                        # run
                        result = model.test('X', sess, iterator_test)

                        pred_label_img = sis_utils.get_output_label(result,
                                                                    meta_test['dim_image'],
                                                                    flags.input_size,
                                                                    meta_test['colormap'], overlap=0,
                                                                    output_image_dim=meta_test['dim_image'],
                                                                    output_patch_size=flags.input_size,
                                                                    make_map=False)
                        # evaluate
                        truth_label_img = scipy.misc.imread(os.path.join(flags.rsr_data_dir, label_name))
                        iou = sis_utils.iou_metric(truth_label_img, pred_label_img * 255)

                        '''plt.subplot(121)
                        plt.imshow(truth_label_img)
                        plt.subplot(122)
                        plt.imshow(pred_label_img)
                        plt.show()'''

                        iou_record[image_name] = iou
                        print('{}_{}: iou={:.2f}'.format(city_name, tile_id, iou*100))
        finally:
            coord.request_stop()
            coord.join(threads)

    duration = time.time() - start_time
    print('duration {:.2f} minutes'.format(duration/60))
    np.save(os.path.join(save_dir, '{}.npy').format(model.model_name), iou_record)

    iou_mean = []
    for _, val in iou_record.items():
        iou_mean.append(val)
    print('{}: {}'.format(flags.model_name, np.mean(iou_mean)))
    return np.mean(iou_mean)
예제 #2
0
def main(flags):
    # set gpu
    os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
    os.environ['CUDA_VISIBLE_DEVICES'] = flags.GPU
    # environment settings
    np.random.seed(flags.random_seed)
    tf.set_random_seed(flags.random_seed)

    # data prepare step
    Data = rsrClassData(flags.rsr_data_dir)
    (collect_files_test, meta_test) = Data.getCollectionByName(flags.test_data_dir)

    # image reader
    coord = tf.train.Coordinator()

    # define place holder
    X = tf.placeholder(tf.float32, shape=[None, flags.input_size[0], flags.input_size[1], 3], name='X')
    y = tf.placeholder(tf.int32, shape=[None, flags.input_size[0], flags.input_size[1], 1], name='y')
    mode = tf.placeholder(tf.bool, name='mode')

    # initialize model
    model = unet.UnetModel({'X':X, 'Y':y}, trainable=mode, model_name=flags.model_name, input_size=flags.input_size)
    model.create_graph('X', flags.num_classes)
    model.make_update_ops('X', 'Y')
    # set ckdir
    model.make_ckdir(flags.ckdir)
    # set up graph and initialize
    config = tf.ConfigProto()

    # run training
    start_time = time.time()
    with tf.Session(config=config) as sess:
        init = tf.global_variables_initializer()
        sess.run(init)

        saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=1)

        if os.path.exists(model.ckdir) and tf.train.get_checkpoint_state(model.ckdir):
            latest_check_point = tf.train.latest_checkpoint(model.ckdir)
            saver.restore(sess, latest_check_point)

        threads = tf.train.start_queue_runners(coord=coord, sess=sess)
        try:
            for (image_name, label_name) in collect_files_test:
                if flags.city_name in image_name:
                    city_name = re.findall('[a-z\-]*(?=[0-9]+\.)', image_name)[0]
                    tile_id = re.findall('[0-9]+(?=\.tif)', image_name)[0]

                    # load reader
                    iterator_test = image_reader.image_label_iterator(
                        os.path.join(flags.rsr_data_dir, image_name),
                        batch_size=flags.batch_size,
                        tile_dim=meta_test['dim_image'][:2],
                        patch_size=flags.input_size,
                        overlap=0)
                    # run
                    result = model.test('X', sess, iterator_test)
                    pred_label_img = sis_utils.get_output_label(result, meta_test['dim_image'],
                                                                flags.input_size, meta_test['colormap'])
                    # evaluate
                    truth_label_img = scipy.misc.imread(os.path.join(flags.rsr_data_dir, label_name))
                    iou = sis_utils.iou_metric(truth_label_img, pred_label_img)

                    print('{}_{}: iou={:.2f}'.format(city_name, tile_id, iou*100))
        finally:
            coord.request_stop()
            coord.join(threads)

    duration = time.time() - start_time
    print('duration {:.2f} minutes'.format(duration/60))
예제 #3
0
def test_and_save(flags, model_name, save_dir):
    # set gpu
    os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
    os.environ['CUDA_VISIBLE_DEVICES'] = flags.GPU
    # environment settings
    np.random.seed(flags.random_seed)
    tf.set_random_seed(flags.random_seed)

    # data prepare step
    Data = rsrClassData(flags.rsr_data_dir)
    (collect_files_test, meta_test) = Data.getCollectionByName(flags.test_data_dir)

    # image reader
    coord = tf.train.Coordinator()

    # define place holder
    X = tf.placeholder(tf.float32, shape=[None, flags.input_size[0], flags.input_size[1], 3], name='X')
    y = tf.placeholder(tf.int32, shape=[None, flags.input_size[0], flags.input_size[1], 1], name='y')
    mode = tf.placeholder(tf.bool, name='mode')

    # initialize model
    if 'appendix' in model_name:
        model = unet.UnetModel_Height_Appendix({'X':X, 'Y':y}, trainable=mode, model_name=model_name, input_size=flags.input_size)
    elif 'Res' in model_name:
        model = unet.ResUnetModel_Crop({'X': X, 'Y': y}, trainable=mode, model_name=model_name,
                                      input_size=flags.input_size)
    else:
        model = unet.UnetModel_Origin({'X':X, 'Y':y}, trainable=mode, model_name=model_name, input_size=flags.input_size)
    if 'large' in model_name:
        model.create_graph('X', flags.num_classes, start_filter_num=40)
    else:
        model.create_graph('X', flags.num_classes)
    model.make_update_ops('X', 'Y')
    # set ckdir
    model.make_ckdir(flags.ckdir)
    # set up graph and initialize
    config = tf.ConfigProto()

    # make fold if not exists
    save_path = os.path.join(save_dir, 'temp_save', model_name)
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    else:
        return save_path

    # run training
    start_time = time.time()
    with tf.Session(config=config) as sess:
        init = tf.global_variables_initializer()
        sess.run(init)

        saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=1)

        if os.path.exists(model.ckdir) and tf.train.get_checkpoint_state(model.ckdir):
            latest_check_point = tf.train.latest_checkpoint(model.ckdir)
            saver.restore(sess, latest_check_point)
            print('loaded {}'.format(latest_check_point))

        threads = tf.train.start_queue_runners(coord=coord, sess=sess)
        try:
            for (image_name, label_name) in collect_files_test:
                c_names = flags.city_name.split(',')
                for c_name in c_names:
                    if c_name in image_name:
                        city_name = re.findall('[a-z\-]*(?=[0-9]+\.)', image_name)[0]
                        tile_id = re.findall('[0-9]+(?=\.tif)', image_name)[0]

                        print('Scoring {}_{} using {}...'.format(city_name, tile_id, model_name))

                        # load reader
                        iterator_test = image_reader.image_label_iterator(
                            os.path.join(flags.rsr_data_dir, image_name),
                            batch_size=flags.batch_size,
                            tile_dim=meta_test['dim_image'][:2],
                            patch_size=flags.input_size,
                            overlap=184, padding=92,
                            image_mean=IMG_MEAN)
                        # run
                        result = model.test('X', sess, iterator_test, soft_pred=True)

                        pred_label_img = sis_utils.get_output_label(result,
                                                                    (meta_test['dim_image'][0]+184, meta_test['dim_image'][1]+184),
                                                                    flags.input_size,
                                                                    meta_test['colormap'], overlap=184,
                                                                    output_image_dim=meta_test['dim_image'],
                                                                    output_patch_size=(flags.input_size[0]-184, flags.input_size[1]-184),
                                                                    make_map=False, soft_pred=True)
                        file_name = os.path.join(save_path, '{}_{}.npy'.format(city_name, tile_id))
                        np.save(file_name, pred_label_img)
        finally:
            coord.request_stop()
            coord.join(threads)

    duration = time.time() - start_time
    print('duration {:.2f} minutes'.format(duration/60))
    return save_path