def __init__(self, sc, atol=1.e-5, offset=(0., 0., 0.), foffset=(0., 0., 0.)): if isinstance(sc, SuperCellChild): sc = sc.sc elif not isinstance(sc, SuperCell): sc = SuperCell(sc) # Unit-cell to fractionalize self._cell = sc.cell.copy() # lengths of lattice vectors self._length = sc.length.copy().reshape(1, 3) # inverse cell (for fractional coordinate calculations) self._icell = cell_invert(self._cell) # absolute tolerance [Ang] self._atol = atol # offset of coordinates before calculating the fractional coordinates self._offset = _a.arrayd(offset).reshape(1, 3) # fractional offset before comparing to the integer part of the fractional coordinate self._foffset = _a.arrayd(foffset).reshape(1, 3) super().__init__( f"fracsite(atol={self._atol}, offset={self._offset}, foffset={self._foffset})" )
def set_parent(self, parent): """ Update the parent associated to this object Parameters ---------- parent : object or array_like an object containing cell vectors """ try: # It probably has the supercell attached parent.cell parent.rcell self.parent = parent except: self.parent = SuperCell(parent)
def __init__(self, parent): try: # It probably has the supercell attached parent.cell parent.rcell self.parent = parent except: self.parent = SuperCell(parent) # Gamma point self._k = _a.zerosd([1, 3]) self._w = _a.onesd(1) # Instantiate the array call self.asarray()
def __init__(self, obj): """ Initialize a `BrillouinZone` object from a given `SuperCell` Parameters ---------- obj : object or array_like An object with associated `obj.cell` and `obj.rcell` or an array of floats which may be turned into a `SuperCell` """ try: obj.cell obj.rcell self.obj = obj except: self.obj = SuperCell(obj) # Instantiate the array call self.array()
def density(self, grid, spinor=None, tol=1e-7, eta=False): r""" Expand the density matrix to the charge density on a grid This routine calculates the real-space density components on a specified grid. This is an *in-place* operation that *adds* to the current values in the grid. Note: To calculate :math:`\rho(\mathbf r)` in a unit-cell different from the originating geometry, simply pass a grid with a unit-cell different than the originating supercell. The real-space density is calculated as: .. math:: \rho(\mathbf r) = \sum_{\nu\mu}\phi_\nu(\mathbf r)\phi_\mu(\mathbf r) D_{\nu\mu} While for non-collinear/spin-orbit calculations the density is determined from the spinor component (`spinor`) by .. math:: \rho_{\boldsymbol\sigma}(\mathbf r) = \sum_{\nu\mu}\phi_\nu(\mathbf r)\phi_\mu(\mathbf r) \sum_\alpha [\boldsymbol\sigma \mathbf \rho_{\nu\mu}]_{\alpha\alpha} Here :math:`\boldsymbol\sigma` corresponds to a spinor operator to extract relevant quantities. By passing the identity matrix the total charge is added. By using the Pauli matrix :math:`\boldsymbol\sigma_x` only the :math:`x` component of the density is added to the grid (see `Spin.X`). Parameters ---------- grid : Grid the grid on which to add the density (the density is in ``e/Ang^3``) spinor : (2,) or (2, 2), optional the spinor matrix to obtain the diagonal components of the density. For un-polarized density matrices this keyword has no influence. For spin-polarized it *has* to be either 1 integer or a vector of length 2 (defaults to total density). For non-collinear/spin-orbit density matrices it has to be a 2x2 matrix (defaults to total density). tol : float, optional DM tolerance for accepted values. For all density matrix elements with absolute values below the tolerance, they will be treated as strictly zeros. eta: bool, optional show a progressbar on stdout """ try: # Once unique has the axis keyword, we know we can safely # use it in this routine # Otherwise we raise an ImportError unique([[0, 1], [2, 3]], axis=0) except: raise NotImplementedError( self.__class__.__name__ + '.density requires numpy >= 1.13, either update ' 'numpy or do not use this function!') geometry = self.geometry # Check that the atomic coordinates, really are all within the intrinsic supercell. # If not, it may mean that the DM does not conform to the primary unit-cell paradigm # of matrix elements. It complicates things. fxyz = geometry.fxyz f_min = fxyz.min() f_max = fxyz.max() if f_min < 0 or 1. < f_max: warn( self.__class__.__name__ + '.density has been passed a geometry where some coordinates are ' 'outside the primary unit-cell. This may potentially lead to problems! ' 'Double check the charge density!') del fxyz, f_min, f_max # Extract sub variables used throughout the loop shape = _a.asarrayi(grid.shape) dcell = grid.dcell # Sparse matrix data csr = self._csr # In the following we don't care about division # So 1) save error state, 2) turn off divide by 0, 3) calculate, 4) turn on old error state old_err = np.seterr(divide='ignore', invalid='ignore') # Placeholder for the resulting coefficients DM = None if self.spin.kind > Spin.POLARIZED: if spinor is None: # Default to the total density spinor = np.identity(2, dtype=np.complex128) else: spinor = _a.arrayz(spinor) if spinor.size != 4 or spinor.ndim != 2: raise ValueError( self.__class__.__name__ + '.density with NC/SO spin, requires a 2x2 matrix.') DM = _a.emptyz([self.nnz, 2, 2]) idx = array_arange(csr.ptr[:-1], n=csr.ncol) if self.spin.kind == Spin.NONCOLINEAR: # non-collinear DM[:, 0, 0] = csr._D[idx, 0] DM[:, 1, 1] = csr._D[idx, 1] DM[:, 1, 0] = csr._D[idx, 2] - 1j * csr._D[idx, 3] #TODO check sign here! DM[:, 0, 1] = np.conj(DM[:, 1, 0]) else: # spin-orbit DM[:, 0, 0] = csr._D[idx, 0] + 1j * csr._D[idx, 4] DM[:, 1, 1] = csr._D[idx, 1] + 1j * csr._D[idx, 5] DM[:, 1, 0] = csr._D[idx, 2] - 1j * csr._D[idx, 3] #TODO check sign here! DM[:, 0, 1] = csr._D[idx, 6] + 1j * csr._D[idx, 7] # Perform dot-product with spinor, and take out the diagonal real part DM = dot(DM, spinor.T)[:, [0, 1], [0, 1]].sum(1).real elif self.spin.kind == Spin.POLARIZED: if spinor is None: spinor = _a.onesd(2) elif isinstance(spinor, Integral): # extract the provided spin-polarization s = _a.zerosd(2) s[spinor] = 1. spinor = s else: spinor = _a.arrayd(spinor) if spinor.size != 2 or spinor.ndim != 1: raise ValueError( self.__class__.__name__ + '.density with polarized spin, requires spinor ' 'argument as an integer, or a vector of length 2') idx = array_arange(csr.ptr[:-1], n=csr.ncol) DM = csr._D[idx, 0] * spinor[0] + csr._D[idx, 1] * spinor[1] else: idx = array_arange(csr.ptr[:-1], n=csr.ncol) DM = csr._D[idx, 0] # Create the DM csr matrix. csrDM = csr_matrix( (DM, csr.col[idx], np.insert(np.cumsum(csr.ncol), 0, 0)), shape=(self.shape[:2]), dtype=DM.dtype) # Clean-up del idx, DM # To heavily speed up the construction of the density we can recreate # the sparse csrDM matrix by summing the lower and upper triangular part. # This means we only traverse the sparse UPPER part of the DM matrix # I.e.: # psi_i * DM_{ij} * psi_j + psi_j * DM_{ji} * psi_i # is equal to: # psi_i * (DM_{ij} + DM_{ji}) * psi_j # Secondly, to ease the loops we extract the main diagonal (on-site terms) # and store this for separate usage csr_sum = [None] * geometry.n_s no = geometry.no primary_i_s = geometry.sc_index([0, 0, 0]) for i_s in range(geometry.n_s): # Extract the csr matrix o_start, o_end = i_s * no, (i_s + 1) * no csr = csrDM[:, o_start:o_end] if i_s == primary_i_s: csr_sum[i_s] = triu(csr) + tril(csr, -1).transpose() else: csr_sum[i_s] = csr # Recreate the column-stacked csr matrix csrDM = ss_hstack(csr_sum, format='csr') del csr, csr_sum # Remove all zero elements (note we use the tolerance here!) csrDM.data = np.where(np.fabs(csrDM.data) > tol, csrDM.data, 0.) # Eliminate zeros and sort indices etc. csrDM.eliminate_zeros() csrDM.sort_indices() csrDM.prune() # 1. Ensure the grid has a geometry associated with it sc = grid.sc.copy() if grid.geometry is None: # Create the actual geometry that encompass the grid ia, xyz, _ = geometry.within_inf(sc) if len(ia) > 0: grid.set_geometry(Geometry(xyz, geometry.atom[ia], sc=sc)) # Instead of looping all atoms in the supercell we find the exact atoms # and their supercell indices. add_R = _a.zerosd(3) + geometry.maxR() # Calculate the required additional vectors required to increase the fictitious # supercell by add_R in each direction. # For extremely skewed lattices this will be way too much, hence we make # them square. o = sc.toCuboid(True) sc = SuperCell(o._v, origo=o.origo) + np.diag(2 * add_R) sc.origo -= add_R # Retrieve all atoms within the grid supercell # (and the neighbours that connect into the cell) IA, XYZ, ISC = geometry.within_inf(sc) # Retrieve progressbar eta = tqdm_eta(len(IA), self.__class__.__name__ + '.density', 'atom', eta) cell = geometry.cell atom = geometry.atom axyz = geometry.axyz a2o = geometry.a2o def xyz2spherical(xyz, offset): """ Calculate the spherical coordinates from indices """ rx = xyz[:, 0] - offset[0] ry = xyz[:, 1] - offset[1] rz = xyz[:, 2] - offset[2] # Calculate radius ** 2 xyz_to_spherical_cos_phi(rx, ry, rz) return rx, ry, rz def xyz2sphericalR(xyz, offset, R): """ Calculate the spherical coordinates from indices """ rx = xyz[:, 0] - offset[0] idx = indices_fabs_le(rx, R) ry = xyz[idx, 1] - offset[1] ix = indices_fabs_le(ry, R) ry = ry[ix] idx = idx[ix] rz = xyz[idx, 2] - offset[2] ix = indices_fabs_le(rz, R) ry = ry[ix] rz = rz[ix] idx = idx[ix] if len(idx) == 0: return [], [], [], [] rx = rx[idx] # Calculate radius ** 2 ix = indices_le(rx**2 + ry**2 + rz**2, R**2) idx = idx[ix] if len(idx) == 0: return [], [], [], [] rx = rx[ix] ry = ry[ix] rz = rz[ix] xyz_to_spherical_cos_phi(rx, ry, rz) return idx, rx, ry, rz # Looping atoms in the sparse pattern is better since we can pre-calculate # the radial parts and then add them. # First create a SparseOrbital matrix, then convert to SparseAtom spO = SparseOrbital(geometry, dtype=np.int16) spO._csr = SparseCSR(csrDM) spA = spO.toSparseAtom(dtype=np.int16) del spO na = geometry.na # Remove the diagonal part of the sparse atom matrix off = na * primary_i_s for ia in range(na): del spA[ia, off + ia] # Get pointers and delete the atomic sparse pattern # The below complexity is because we are not finalizing spA csr = spA._csr a_ptr = np.insert(_a.cumsumi(csr.ncol), 0, 0) a_col = csr.col[array_arange(csr.ptr, n=csr.ncol)] del spA, csr # Get offset in supercell in orbitals off = geometry.no * primary_i_s origo = grid.origo # TODO sum the non-origo atoms to the csrDM matrix # this would further decrease the loops required. # Loop over all atoms in the grid-cell for ia, ia_xyz, isc in zip(IA, XYZ - origo.reshape(1, 3), ISC): # Get current atom ia_atom = atom[ia] IO = a2o(ia) IO_range = range(ia_atom.no) cell_offset = (cell * isc.reshape(3, 1)).sum(0) - origo # Extract maximum R R = ia_atom.maxR() if R <= 0.: warn("Atom '{}' does not have a wave-function, skipping atom.". format(ia_atom)) eta.update() continue # Retrieve indices of the grid for the atomic shape idx = grid.index(ia_atom.toSphere(ia_xyz)) # Now we have the indices for the largest orbital on the atom # Subsequently we have to loop the orbitals and the # connecting orbitals # Then we find the indices that overlap with these indices # First reduce indices to inside the grid-cell idx[idx[:, 0] < 0, 0] = 0 idx[shape[0] <= idx[:, 0], 0] = shape[0] - 1 idx[idx[:, 1] < 0, 1] = 0 idx[shape[1] <= idx[:, 1], 1] = shape[1] - 1 idx[idx[:, 2] < 0, 2] = 0 idx[shape[2] <= idx[:, 2], 2] = shape[2] - 1 # Remove duplicates, requires numpy >= 1.13 idx = unique(idx, axis=0) if len(idx) == 0: eta.update() continue # Get real-space coordinates for the current atom # as well as the radial parts grid_xyz = dot(idx, dcell) # Perform loop on connection atoms # Allocate the DM_pj arrays # This will have a size equal to number of elements times number of # orbitals on this atom # In this way we do not have to calculate the psi_j multiple times DM_io = csrDM[IO:IO + ia_atom.no, :].tolil() DM_pj = _a.zerosd([ia_atom.no, grid_xyz.shape[0]]) # Now we perform the loop on the connections for this atom # Remark that we have removed the diagonal atom (it-self) # As that will be calculated in the end for ja in a_col[a_ptr[ia]:a_ptr[ia + 1]]: # Retrieve atom (which contains the orbitals) ja_atom = atom[ja % na] JO = a2o(ja) jR = ja_atom.maxR() # Get actual coordinate of the atom ja_xyz = axyz(ja) + cell_offset # Reduce the ia'th grid points to those that connects to the ja'th atom ja_idx, ja_r, ja_theta, ja_cos_phi = xyz2sphericalR( grid_xyz, ja_xyz, jR) if len(ja_idx) == 0: # Quick step continue # Loop on orbitals on this atom for jo in range(ja_atom.no): o = ja_atom.orbital[jo] oR = o.R # Downsize to the correct indices if jR - oR < 1e-6: ja_idx1 = ja_idx.view() ja_r1 = ja_r.view() ja_theta1 = ja_theta.view() ja_cos_phi1 = ja_cos_phi.view() else: ja_idx1 = indices_le(ja_r, oR) if len(ja_idx1) == 0: # Quick step continue # Reduce arrays ja_r1 = ja_r[ja_idx1] ja_theta1 = ja_theta[ja_idx1] ja_cos_phi1 = ja_cos_phi[ja_idx1] ja_idx1 = ja_idx[ja_idx1] # Calculate the psi_j component psi = o.psi_spher(ja_r1, ja_theta1, ja_cos_phi1, cos_phi=True) # Now add this orbital to all components for io in IO_range: DM_pj[io, ja_idx1] += DM_io[io, JO + jo] * psi # Temporary clean up del ja_idx, ja_r, ja_theta, ja_cos_phi del ja_idx1, ja_r1, ja_theta1, ja_cos_phi1, psi # Now we have all components for all orbitals connection to all orbitals on atom # ia. We simply need to add the diagonal components # Loop on the orbitals on this atom ia_r, ia_theta, ia_cos_phi = xyz2spherical(grid_xyz, ia_xyz) del grid_xyz for io in IO_range: # Only loop halve the range. # This is because: triu + tril(-1).transpose() # removes the lower half of the on-site matrix. for jo in range(io + 1, ia_atom.no): DM = DM_io[io, off + IO + jo] oj = ia_atom.orbital[jo] ojR = oj.R # Downsize to the correct indices if R - ojR < 1e-6: ja_idx1 = slice(None) ja_r1 = ia_r.view() ja_theta1 = ia_theta.view() ja_cos_phi1 = ia_cos_phi.view() else: ja_idx1 = indices_le(ia_r, ojR) if len(ja_idx1) == 0: # Quick step continue # Reduce arrays ja_r1 = ia_r[ja_idx1] ja_theta1 = ia_theta[ja_idx1] ja_cos_phi1 = ia_cos_phi[ja_idx1] # Calculate the psi_j component DM_pj[io, ja_idx1] += DM * oj.psi_spher( ja_r1, ja_theta1, ja_cos_phi1, cos_phi=True) # Calculate the psi_i component # Note that this one *also* zeroes points outside the shell # I.e. this step is important because it "nullifies" all but points where # orbital io is defined. psi = ia_atom.orbital[io].psi_spher(ia_r, ia_theta, ia_cos_phi, cos_phi=True) DM_pj[io, :] += DM_io[io, off + IO + io] * psi DM_pj[io, :] *= psi # Temporary clean up ja_idx1 = ja_r1 = ja_theta1 = ja_cos_phi1 = None del ia_r, ia_theta, ia_cos_phi, psi, DM_io # Now add the density grid.grid[idx[:, 0], idx[:, 1], idx[:, 2]] += DM_pj.sum(0) # Clean-up del DM_pj, idx eta.update() eta.close() # Reset the error code for division np.seterr(**old_err)
def wavefunction(v, grid, geometry=None, k=None, spinor=0, spin=None, eta=False): r""" Add the wave-function (`Orbital.psi`) component of each orbital to the grid This routine calculates the real-space wave-function components in the specified grid. This is an *in-place* operation that *adds* to the current values in the grid. It may be instructive to check that an eigenstate is normalized: >>> grid = Grid(...) # doctest: +SKIP >>> psi(state, grid) # doctest: +SKIP >>> (np.abs(grid.grid) ** 2).sum() * grid.dvolume == 1. # doctest: +SKIP Note: To calculate :math:`\psi(\mathbf r)` in a unit-cell different from the originating geometry, simply pass a grid with a unit-cell smaller than the originating supercell. The wavefunctions are calculated in real-space via: .. math:: \psi(\mathbf r) = \sum_i\phi_i(\mathbf r) |\psi\rangle_i \exp(-i\mathbf k \mathbf R) While for non-collinear/spin-orbit calculations the wavefunctions are determined from the spinor component (`spinor`) .. math:: \psi_{\alpha/\beta}(\mathbf r) = \sum_i\phi_i(\mathbf r) |\psi_{\alpha/\beta}\rangle_i \exp(-i\mathbf k \mathbf R) where ``spinor in [0, 1]`` determines :math:`\alpha` or :math:`\beta`, respectively. Notes ----- Currently this method only works for :math:`\Gamma` states Parameters ---------- v : array_like coefficients for the orbital expansion on the real-space grid. If `v` is a complex array then the `grid` *must* be complex as well. grid : Grid grid on which the wavefunction will be plotted. If multiple eigenstates are in this object, they will be summed. geometry : Geometry, optional geometry where the orbitals are defined. This geometry's orbital count must match the number of elements in `v`. If this is ``None`` the geometry associated with `grid` will be used instead. k : array_like, optional k-point associated with wavefunction, by default the inherent k-point used to calculate the eigenstate will be used (generally shouldn't be used unless the `EigenstateElectron` object has not been created via `Hamiltonian.eigenstate`). spinor : int, optional the spinor for non-collinear/spin-orbit calculations. This is only used if the eigenstate object has been created from a parent object with a `Spin` object contained, *and* if the spin-configuration is non-collinear or spin-orbit coupling. Default to the first spinor component. spin : Spin, optional specification of the spin configuration of the orbital coefficients. This only has influence for non-collinear wavefunctions where `spinor` choice is important. eta : bool, optional Display a console progressbar. """ if geometry is None: geometry = grid.geometry warn( 'wavefunction was not passed a geometry associated, will use the geometry associated with the Grid.' ) if geometry is None: raise SislError( 'wavefunction did not find a usable Geometry through keywords or the Grid!' ) # In case the user has passed several vectors we sum them to plot the summed state if v.ndim == 2: v = v.sum(0) if spin is None: if len(v) // 2 == geometry.no: # We can see from the input that the vector *must* be a non-collinear calculation v = v.reshape(-1, 2)[:, spinor] info( 'wavefunction assumes the input wavefunction coefficients to originate from a non-collinear calculation!' ) elif spin.kind > Spin.POLARIZED: # For non-collinear cases the user selects the spinor component. v = v.reshape(-1, 2)[:, spinor] if len(v) != geometry.no: raise ValueError( "wavefunction require wavefunction coefficients corresponding to number of orbitals in the geometry." ) # Check for k-points k = _a.asarrayd(k) kl = (k**2).sum()**0.5 has_k = kl > 0.000001 if has_k: raise NotImplementedError( 'wavefunction for k != Gamma does not produce correct wavefunctions!' ) # Check that input/grid makes sense. # If the coefficients are complex valued, then the grid *has* to be # complex valued. # Likewise if a k-point has been passed. is_complex = np.iscomplexobj(v) or has_k if is_complex and not np.iscomplexobj(grid.grid): raise SislError( "wavefunction input coefficients are complex, while grid only contains real." ) if is_complex: psi_init = _a.zerosz else: psi_init = _a.zerosd # Extract sub variables used throughout the loop shape = _a.asarrayi(grid.shape) dcell = grid.dcell ic = grid.sc.icell * shape.reshape(1, -1) geom_shape = dot(ic, geometry.cell.T).T # In the following we don't care about division # So 1) save error state, 2) turn off divide by 0, 3) calculate, 4) turn on old error state old_err = np.seterr(divide='ignore', invalid='ignore') addouter = add.outer def idx2spherical(ix, iy, iz, offset, dc, R): """ Calculate the spherical coordinates from indices """ rx = addouter(addouter(ix * dc[0, 0], iy * dc[1, 0]), iz * dc[2, 0] - offset[0]).ravel() ry = addouter(addouter(ix * dc[0, 1], iy * dc[1, 1]), iz * dc[2, 1] - offset[1]).ravel() rz = addouter(addouter(ix * dc[0, 2], iy * dc[1, 2]), iz * dc[2, 2] - offset[2]).ravel() # Total size of the indices n = rx.shape[0] # Reduce our arrays to where the radius is "fine" idx = indices_le(rx**2 + ry**2 + rz**2, R**2) rx = rx[idx] ry = ry[idx] rz = rz[idx] xyz_to_spherical_cos_phi(rx, ry, rz) return n, idx, rx, ry, rz # Figure out the max-min indices with a spacing of 1 radian rad1 = pi / 180 theta, phi = ogrid[-pi:pi:rad1, 0:pi:rad1] cphi, sphi = cos(phi), sin(phi) ctheta_sphi = cos(theta) * sphi stheta_sphi = sin(theta) * sphi del sphi nrxyz = (theta.size, phi.size, 3) del theta, phi, rad1 # First we calculate the min/max indices for all atoms idx_mm = _a.emptyi([geometry.na, 2, 3]) rxyz = _a.emptyd(nrxyz) rxyz[..., 0] = ctheta_sphi rxyz[..., 1] = stheta_sphi rxyz[..., 2] = cphi # Reshape rxyz.shape = (-1, 3) idx = dot(ic, rxyz.T) idxm = idx.min(1).reshape(1, 3) idxM = idx.max(1).reshape(1, 3) del ctheta_sphi, stheta_sphi, cphi, idx, rxyz, nrxyz origo = grid.sc.origo.reshape(1, -1) for atom, ia in geometry.atom.iter(True): if len(ia) == 0: continue R = atom.maxR() # Now do it for all the atoms to get indices of the middle of # the atoms # The coordinates are relative to origo, so we need to shift (when writing a grid # it is with respect to origo) xyz = geometry.xyz[ia, :] - origo idx = dot(ic, xyz.T).T # Get min-max for all atoms idx_mm[ia, 0, :] = idxm * R + idx idx_mm[ia, 1, :] = idxM * R + idx # Now we have min-max for all atoms # When we run the below loop all indices can be retrieved by looking # up in the above table. # Before continuing, we can easily clean up the temporary arrays del origo, idx aranged = _a.aranged # In case this grid does not have a Geometry associated # We can *perhaps* easily attach a geometry with the given # atoms in the unit-cell sc = grid.sc.copy() if grid.geometry is None: # Create the actual geometry that encompass the grid ia, xyz, _ = geometry.within_inf(sc) if len(ia) > 0: grid.set_geometry(Geometry(xyz, geometry.atom[ia], sc=sc)) # Instead of looping all atoms in the supercell we find the exact atoms # and their supercell indices. add_R = _a.zerosd(3) + geometry.maxR() # Calculate the required additional vectors required to increase the fictitious # supercell by add_R in each direction. # For extremely skewed lattices this will be way too much, hence we make # them square. o = sc.toCuboid(True) sc = SuperCell(o._v, origo=o.origo) + np.diag(2 * add_R) sc.origo -= add_R # Retrieve all atoms within the grid supercell # (and the neighbours that connect into the cell) IA, XYZ, ISC = geometry.within_inf(sc) r_k = dot(geometry.rcell, k) r_k_cell = dot(r_k, geometry.cell) phase = 1 # Retrieve progressbar eta = tqdm_eta(len(IA), 'wavefunction', 'atom', eta) # Loop over all atoms in the grid-cell for ia, xyz, isc in zip(IA, XYZ - grid.origo.reshape(1, 3), ISC): # Get current atom atom = geometry.atom[ia] # Extract maximum R R = atom.maxR() if R <= 0.: warn("Atom '{}' does not have a wave-function, skipping atom.". format(atom)) eta.update() continue # Get indices in the supercell grid idx = (isc.reshape(3, 1) * geom_shape).sum(0) idxm = floor(idx_mm[ia, 0, :] + idx).astype(int32) idxM = ceil(idx_mm[ia, 1, :] + idx).astype(int32) + 1 # Fast check whether we can skip this point if idxm[0] >= shape[0] or idxm[1] >= shape[1] or idxm[2] >= shape[2] or \ idxM[0] <= 0 or idxM[1] <= 0 or idxM[2] <= 0: eta.update() continue # Truncate values if idxm[0] < 0: idxm[0] = 0 if idxM[0] > shape[0]: idxM[0] = shape[0] if idxm[1] < 0: idxm[1] = 0 if idxM[1] > shape[1]: idxM[1] = shape[1] if idxm[2] < 0: idxm[2] = 0 if idxM[2] > shape[2]: idxM[2] = shape[2] # Now idxm/M contains min/max indices used # Convert to spherical coordinates n, idx, r, theta, phi = idx2spherical(aranged(idxm[0], idxM[0]), aranged(idxm[1], idxM[1]), aranged(idxm[2], idxM[2]), xyz, dcell, R) # Get initial orbital io = geometry.a2o(ia) if has_k: phase = np.exp(-1j * (dot(r_k_cell, isc))) # TODO # Possibly the phase should be an additional # array for the position in the unit-cell! # + np.exp(-1j * dot(r_k, spher2cart(r, theta, np.arccos(phi)).T) ) # Allocate a temporary array where we add the psi elements psi = psi_init(n) # Loop on orbitals on this atom, grouped by radius for os in atom.iter(True): # Get the radius of orbitals (os) oR = os[0].R if oR <= 0.: warn( "Orbital(s) '{}' does not have a wave-function, skipping orbital!" .format(os)) # Skip these orbitals io += len(os) continue # Downsize to the correct indices if R - oR < 1e-6: idx1 = idx.view() r1 = r.view() theta1 = theta.view() phi1 = phi.view() else: idx1 = indices_le(r, oR) # Reduce arrays r1 = r[idx1] theta1 = theta[idx1] phi1 = phi[idx1] idx1 = idx[idx1] # Loop orbitals with the same radius for o in os: # Evaluate psi component of the wavefunction and add it for this atom psi[idx1] += o.psi_spher(r1, theta1, phi1, cos_phi=True) * (v[io] * phase) io += 1 # Clean-up del idx1, r1, theta1, phi1, idx, r, theta, phi # Convert to correct shape and add the current atom contribution to the wavefunction psi.shape = idxM - idxm grid.grid[idxm[0]:idxM[0], idxm[1]:idxM[1], idxm[2]:idxM[2]] += psi # Clean-up del psi # Step progressbar eta.update() eta.close() # Reset the error code for division np.seterr(**old_err)
def _call(self, *args, **kwargs): data_axis = kwargs.pop('data_axis', None) grid_unit = kwargs.pop('grid_unit', 'b') func = getattr(self.parent, self._bz_attr) wrap = allow_kwargs('parent', 'k', 'weight')(kwargs.pop('wrap', _do_nothing)) eta = tqdm_eta(len(self), self.__class__.__name__ + '.asgrid', 'k', kwargs.pop('eta', False)) parent = self.parent k = self.k w = self.weight # Extract information from the MP grid, these values # define the Grid size, etc. diag = self._diag.copy() if not np.all(self._displ == 0): raise SislError(self.__class__.__name__ + '.{} requires the displacement to be 0 for all k-points.'.format(self._bz_attr)) displ = self._displ.copy() size = self._size.copy() steps = size / diag if self._centered: offset = np.where(diag % 2 == 0, steps, steps / 2) else: offset = np.where(diag % 2 == 0, steps / 2, steps) # Instead of doing # _in_primitive(k) + 0.5 - offset # we can do it here # _in_primitive(k) + offset' offset -= 0.5 # Check the TRS direction trs_axis = self._trs _in_primitive = self.in_primitive _rint = np.rint _int32 = np.int32 def k2idx(k): # In case TRS is applied two indices may be returned return _rint((_in_primitive(k) - offset) / steps).astype(_int32) # To find the opposite k-point, do this # idx[i] = [diag[i] - idx[i] - 1, idx[i] # with i in [0, 1, 2] # Create cell from the reciprocal cell. if grid_unit == 'b': cell = np.diag(self._size) else: cell = parent.sc.rcell * self._size.reshape(1, -1) / units('Ang', grid_unit) # Find the grid origo origo = -(cell * 0.5).sum(0) # Calculate first k-point (to get size and dtype) v = wrap(func(*args, k=k[0], **kwargs), parent=parent, k=k[0], weight=w[0]) if data_axis is None: if v.size != 1: raise SislError(self.__class__.__name__ + '.{} requires one value per-kpoint because of the 3D grid values'.format(self._bz_attr)) else: # Check the weights weights = self.grid(diag[data_axis], displ[data_axis], size[data_axis], centered=self._centered, trs=trs_axis == data_axis)[1] # Correct the Grid size diag[data_axis] = len(v) # Create the orthogonal cell direction to ensure it is orthogonal # Since array axis is cyclic for negative numbers, we simply do this cell[data_axis, :] = cross(cell[data_axis-1, :], cell[data_axis-2, :]) # Check whether we should rotate it if cart2spher(cell[data_axis, :])[2] > pi / 4: cell[data_axis, :] *= -1 # Correct cell for the grid if trs_axis >= 0: origo[trs_axis] = 0. # Correct offset since we only have the positive halve if self._diag[trs_axis] % 2 == 0 and not self._centered: offset[trs_axis] = steps[trs_axis] / 2 else: offset[trs_axis] = 0. # Find number of points if trs_axis != data_axis: diag[trs_axis] = len(self.grid(diag[trs_axis], displ[trs_axis], size[trs_axis], centered=self._centered, trs=True)[1]) # Create the grid in the reciprocal cell sc = SuperCell(cell, origo=origo) grid = Grid(diag, sc=sc, dtype=v.dtype) if data_axis is None: grid[k2idx(k[0])] = v else: idx = k2idx(k[0]).tolist() weight = weights[idx[data_axis]] idx[data_axis] = slice(None) grid[idx] = v * weight del v # Now perform calculation if data_axis is None: for i in range(1, len(k)): grid[k2idx(k[i])] = wrap(func(*args, k=k[i], **kwargs), parent=parent, k=k[i], weight=w[i]) eta.update() else: for i in range(1, len(k)): idx = k2idx(k[i]).tolist() weight = weights[idx[data_axis]] idx[data_axis] = slice(None) grid[idx] = wrap(func(*args, k=k[i], **kwargs), parent=parent, k=k[i], weight=w[i]) * weight eta.update() eta.close() return grid