예제 #1
0
def get_layer_heights_kmeans(traj, cell, n, surface_normal=np.array([0, 0,
                                                                     1])):
    """Find the heights of the centers of the layers, along `surface_normal`, in `traj`.

    Uses k-means over all (`surface_normal`-relative) heights in the trajectory.

    Args:
        - traj (ndarray n_frames x n_atoms x 3)
        - cell (ndarray 3x3 matrix)
        - n (int): The number of layers to identify (the k for k-means).
        - surface_normal (3-vector): A unit vector normal to the surface. Defaults
            to the z direction <0, 0, 1>.
    Returns:
        sorted ndarray of heights along surface normal
    """
    from sklearn.cluster import KMeans

    # We have to wrap first to get consistant results along the surface normal
    traj = traj.copy().reshape(-1, 3)
    pbcc = PBCCalculator(cell)
    pbcc.wrap_points(traj)

    heights = np.dot(surface_normal, traj.T)

    kmeans = KMeans(n_clusters=n).fit(heights.reshape(-1, 1))
    heights = kmeans.cluster_centers_.reshape(-1)
    heights.sort()
    return heights
예제 #2
0
    def compute_volumes(self, sn):
        """Computes the volume of the convex hull defined by each sites' static verticies.

        Requires vertex information in the SiteNetwork.

        Adds the ``site_volumes`` and ``site_surface_areas`` attributes.

        Volumes can be NaN for degenerate hulls/point sets on which QHull fails.

        Args:
            - sn (SiteNetwork)
        """
        assert isinstance(sn, SiteNetwork)
        if sn.vertices is None:
            raise ValueError(
                "SiteNetwork must have verticies to compute volumes!")

        vols = np.empty(shape=sn.n_sites, dtype=np.float)
        areas = np.empty(shape=sn.n_sites, dtype=np.float)

        pbcc = PBCCalculator(sn.structure.cell)

        for site in range(sn.n_sites):
            pos = sn.static_structure.positions[list(sn.vertices[site])]
            if len(pos) < 4:
                if self.error_on_insufficient_coord:
                    raise InsufficientCoordinatingAtomsError(
                        "Site %i had only %i vertices (less than needed 4)" %
                        (site, len(pos)))
                else:
                    vols[site] = 0
                    areas[site] = np.nan
                    continue

            assert pos.flags[
                'OWNDATA']  # It should since we're indexing with index lists
            # Recenter
            offset = pbcc.cell_centroid - sn.centers[site]
            pos += offset
            pbcc.wrap_points(pos)

            try:
                hull = ConvexHull(pos)
                vols[site] = hull.volume
                areas[site] = hull.area
            except QhullError as qhe:
                logger.warning(
                    "Had QHull failure when computing volume of site %i" %
                    site)
                vols[site] = np.nan
                areas[site] = np.nan

        sn.add_site_attribute('site_volumes', vols)
        sn.add_site_attribute('site_surface_areas', areas)
예제 #3
0
    def compute_accessable_volumes(self, st, n_recenterings=8):
        """Computes the volumes of convex hulls around all positions associated with a site.

        Uses the shift-and-wrap trick for dealing with periodicity, so sites that
        take up the majority of the unit cell may give bogus results.

        Adds the ``accessable_site_volumes`` attribute to the ``SiteNetwork``.

        Args:
            st (SiteTrajectory)
            n_recenterings (int): How many different recenterings to try (the
                algorithm will recenter around n of the points and take the minimal
                resulting volume; this deals with cases where there is one outlier
                where recentering around it gives very bad results.)
        """
        assert isinstance(st, SiteTrajectory)
        vols = np.empty(shape=st.site_network.n_sites, dtype=np.float)
        areas = np.empty(shape=st.site_network.n_sites, dtype=np.float)

        pbcc = PBCCalculator(st.site_network.structure.cell)

        for site in range(st.site_network.n_sites):
            pos = st.real_positions_for_site(site)

            assert pos.flags['OWNDATA']

            vol = np.inf
            area = None
            for i in range(n_recenterings):
                # Recenter
                offset = pbcc.cell_centroid - pos[int(
                    i * (len(pos) / n_recenterings))]
                pos += offset
                pbcc.wrap_points(pos)

                try:
                    hull = ConvexHull(pos)
                except QhullError as qhe:
                    logger.warning("For site %i, iter %i: %s" % (site, i, qhe))
                    vols[site] = np.nan
                    areas[site] = np.nan
                    continue

                if hull.volume < vol:
                    vol = hull.volume
                    area = hull.area

            vols[site] = vol
            areas[site] = area

        st.site_network.add_site_attribute('accessable_site_volumes', vols)
예제 #4
0
    def run(self, sn):
        assert isinstance(sn, SiteNetwork)
        out = sn.copy()
        pbcc = PBCCalculator(sn.structure.cell)


        newcenters = out.centers.repeat(self.n, axis = 0)
        assert len(newcenters) == self.n * len(out.centers)
        newcenters += self.sigma * np.random.standard_normal(size = newcenters.shape)

        pbcc.wrap_points(newcenters)

        out.centers = newcenters

        return out
예제 #5
0
파일: atoms.py 프로젝트: grieder/sitator
def plot_atoms(atoms, positions = None, hide_species = (), wrap = False, fig = None, ax = None, i = None):

    mask = [not (e in hide_species) for e in atoms.get_chemical_symbols()]

    if positions is None:
        pts = atoms.get_positions()
    else:
        pts = positions
    pts = pts[mask]
    species = [s for i, s in enumerate(atoms.get_chemical_symbols()) if mask[i]]

    if wrap:
        pbcc = PBCCalculator(atoms.cell)
        pts = atoms.get_positions().copy()
        pbcc.wrap_points(pts)

    ax.scatter(pts[:,0], pts[:,1], pts[:,2],
               c = [color_for_species(s) for s in species],
               s = [20.0 * ase.data.covalent_radii[ase.data.atomic_numbers[s]] for s in species])


    all_cvecs = []
    whos_left = set(xrange(len(atoms.cell)))
    for i, cvec1 in enumerate(atoms.cell):
        all_cvecs.append(np.array([[0.0, 0.0, 0.0], cvec1]))
        for j, cvec2 in enumerate(atoms.cell[list(whos_left - {i})]):
            all_cvecs.append(np.array([cvec1, cvec1 + cvec2]))
    for i, cvec1 in enumerate(atoms.cell):
        start = np.sum(atoms.cell[list(whos_left - {i})], axis = 0)
        all_cvecs.append(np.array([start, start + cvec1]))

    for cvec in all_cvecs:
        ax.plot(cvec[:,0],
                cvec[:,1],
                cvec[:,2],
                color = "gray",
                alpha=0.5,
                linewidth = 0.7,
                linestyle="--")

    set_axes_equal(ax)
예제 #6
0
    def plot_site(self, site, **kwargs):
        pbcc = PBCCalculator(self._sn.structure.cell)
        pts = self.real_positions_for_site(site).copy()
        offset = pbcc.cell_centroid - pts[3]
        pts += offset
        pbcc.wrap_points(pts)
        lattice_pos = self._sn.static_structure.positions.copy()
        lattice_pos += offset
        pbcc.wrap_points(lattice_pos)
        site_pos = self._sn.centers[site:site + 1].copy()
        site_pos += offset
        pbcc.wrap_points(site_pos)
        # Plot point cloud
        plot_points(points=pts, alpha=0.3, marker='.', color='k', **kwargs)
        # Plot site
        plot_points(points=site_pos, color='cyan', **kwargs)
        # Plot everything else
        plot_atoms(self._sn.static_structure, positions=lattice_pos, **kwargs)

        title = "Site %i/%i" % (site, len(self._sn))

        if not self._sn.site_types is None:
            title += " (type %i)" % self._sn.site_types[site]

        kwargs['ax'].set_title(title)
예제 #7
0
    def run(self, st):
        vols = np.empty(shape = st.site_network.n_sites, dtype = np.float)
        areas = np.empty(shape = st.site_network.n_sites, dtype = np.float)

        pbcc = PBCCalculator(st.site_network.structure.cell)

        for site in xrange(st.site_network.n_sites):
            pos = st.real_positions_for_site(site)

            assert pos.flags['OWNDATA']

            vol = np.inf
            area = None
            for i in xrange(self.n_recenterings):
                # Recenter
                offset = pbcc.cell_centroid - pos[int(i * (len(pos)/self.n_recenterings))]
                pos += offset
                pbcc.wrap_points(pos)

                try:
                    hull = ConvexHull(pos)
                except QhullError as qhe:
                    print "For site %i, iter %i: %s" % (site, i, qhe)
                    vols[site] = np.nan
                    areas[site] = np.nan
                    continue

                if hull.volume < vol:
                    vol = hull.volume
                    area = hull.area

            vols[site] = vol
            areas[site] = area

        st.site_network.add_site_attribute('site_volumes', vols)
        st.site_network.add_site_attribute('site_surface_areas', areas)
예제 #8
0
class LandmarkAnalysis(object):
    """Site analysis of mobile atoms in a static lattice with landmark analysis.

    :param double cutoff_center: The midpoint for the logistic function used
        as the landmark cutoff function. (unitless)
    :param double cutoff_steepness: Steepness of the logistic cutoff function.
    :param double minimum_site_occupancy = 0.1: Minimum occupancy (% of time occupied)
        for a site to qualify as such.
    :param str clustering_algorithm: The landmark clustering algorithm. ``sitator``
        supplies two:
         - ``"dotprod"``: The method described in our "Unsupervised landmark
            analysis for jump detection in molecular dynamics simulations" paper.
         - ``"mcl"``: A newer method we are developing.
    :param dict clustering_params: Parameters for the chosen ``clustering_algorithm``.
    :param str site_centers_method: The method to use for computing the real
        space positions of the sites. Options:
         - ``SITE_CENTERS_REAL_UNWEIGHTED``: A spatial average of all real-space
            mobile atom positions assigned to the site is taken.
         - ``SITE_CENTERS_REAL_WEIGHTED``: A spatial average of all real-space
            mobile atom positions assigned to the site is taken, weighted
            by the confidences with which they assigned to the site.
         - ``SITE_CENTERS_REPRESENTATIVE_LANDMARK``: A spatial average over
            all landmarks' centers is taken, weighted by the representative
            or "typical" landmark vector at the site.
        The "real" methods will generally be more faithful to the simulation,
        but the representative landmark method can work better in cases with
        short trajectories, producing a more "ideal" site location.
    :param bool check_for_zero_landmarks: Whether to check for and raise exceptions
        when all-zero landmark vectors are computed.
    :param float static_movement_threshold: (Angstrom) the maximum allowed
        distance between an instantanous static atom position and it's ideal position.
    :param bool dynamic_lattice_mapping: Whether to dynamically decide each
        frame which static atom represents each average lattice position;
        this allows the LandmarkAnalysis to deal with, say, a rare exchage of
        two static atoms that does not change the structure of the lattice.

        It does NOT allow LandmarkAnalysis to deal with lattices whose structures
        actually change over the course of the trajectory.

        In certain cases this is better delt with by ``MergeSitesByDynamics``.
    :param int max_mobile_per_site: The maximum number of mobile atoms that can
        be assigned to a single site without throwing an error. Regardless of the
        value, assignments of more than one mobile atom to a single site will
        be recorded and reported.

        Setting this to 2 can be necessary for very diffusive, liquid-like
        materials at high temperatures.

        Statistics related to this are reported in ``self.avg_mobile_per_site``
        and ``self.n_multiple_assignments``.
    :param bool force_no_memmap: if True, landmark vectors will be stored only in memory.
        Only useful if access to landmark vectors after the analysis has run is desired.
    :param bool verbose: Verbosity for the ``clustering_algorithm``. Other output
        controlled through ``logging``.
    """

    SITE_CENTERS_REAL_UNWEIGHTED = 'real-unweighted'
    SITE_CENTERS_REAL_WEIGHTED = 'real-weighted'
    SITE_CENTERS_REPRESENTATIVE_LANDMARK = 'representative-landmark'

    CLUSTERING_CLUSTER_SIZE = 'cluster-size'
    CLUSTERING_LABELS = 'cluster-labels'
    CLUSTERING_CONFIDENCES = 'cluster-confs'
    CLUSTERING_LANDMARK_GROUPINGS = 'cluster-landmark-groupings'
    CLUSTERING_REPRESENTATIVE_LANDMARKS = 'cluster-representative-lvecs'

    def __init__(self,
                 clustering_algorithm='dotprod',
                 clustering_params={},
                 cutoff_midpoint=1.5,
                 cutoff_steepness=30,
                 minimum_site_occupancy=0.01,
                 site_centers_method=SITE_CENTERS_REAL_WEIGHTED,
                 check_for_zero_landmarks=True,
                 static_movement_threshold=1.0,
                 dynamic_lattice_mapping=False,
                 relaxed_lattice_checks=False,
                 max_mobile_per_site=1,
                 force_no_memmap=False,
                 verbose=True):
        self._cutoff_midpoint = cutoff_midpoint
        self._cutoff_steepness = cutoff_steepness
        self._minimum_site_occupancy = minimum_site_occupancy

        self._cluster_algo = clustering_algorithm
        self._clustering_params = clustering_params

        self.verbose = verbose
        self.check_for_zero_landmarks = check_for_zero_landmarks
        self.site_centers_method = site_centers_method
        self.dynamic_lattice_mapping = dynamic_lattice_mapping
        self.relaxed_lattice_checks = relaxed_lattice_checks

        self._landmark_vectors = None
        self._landmark_dimension = None

        self.static_movement_threshold = static_movement_threshold
        self.max_mobile_per_site = max_mobile_per_site

        self.force_no_memmap = force_no_memmap

        self._has_run = False

    @property
    def cutoff(self):
        return self._cutoff

    @analysis_result
    def landmark_vectors(self):
        """Landmark vectors from the last invocation of ``run()``"""
        view = self._landmark_vectors[:]
        view.flags.writeable = False
        return view

    @analysis_result
    def landmark_dimension(self):
        """Number of components in a single landmark vector."""
        return self._landmark_dimension

    def run(self, sn, frames):
        """Run the landmark analysis.

        The input ``SiteNetwork`` is a network of predicted sites; it's sites will
        be used as the "basis" for the landmark vectors.

        Wraps a copy of ``frames`` into the unit cell.

        Args:
            sn (SiteNetwork): The landmark basis. Each site is a landmark defined
                by its vertex static atoms, as indicated by `sn.vertices`.
                (Typically from ``VoronoiSiteGenerator``.)
            frames (ndarray n_frames x n_atoms x 3): A trajectory. Can be unwrapped;
                a copy will be wrapped before the analysis.
        """
        assert isinstance(sn, SiteNetwork)

        if self._has_run:
            raise ValueError("Cannot rerun LandmarkAnalysis!")

        if frames.shape[1:] != (sn.n_total, 3):
            raise ValueError("Wrong shape %s for frames." % (frames.shape, ))

        if sn.vertices is None:
            raise ValueError("Input SiteNetwork must have vertices")

        n_frames = len(frames)

        logger.info("--- Running Landmark Analysis ---")

        # Create PBCCalculator
        self._pbcc = PBCCalculator(sn.structure.cell)

        # -- Step 0: Wrap to Unit Cell
        orig_frames = frames  # Keep a reference around
        frames = frames.copy()
        # Flatten to list of points for wrapping
        orig_frame_shape = frames.shape
        frames.shape = (orig_frame_shape[0] * orig_frame_shape[1], 3)
        self._pbcc.wrap_points(frames)
        # Back to list of frames
        frames.shape = orig_frame_shape

        # -- Step 1: Compute site-to-vertex distances
        self._landmark_dimension = sn.n_sites

        longest_vert_set = np.max([len(v) for v in sn.vertices])
        verts_np = np.array([
            np.concatenate((v, [-1] * (longest_vert_set - len(v))))
            for v in sn.vertices
        ],
                            dtype=np.int)
        site_vert_dists = np.empty(shape=verts_np.shape, dtype=np.float)
        site_vert_dists.fill(np.nan)

        for i, polyhedron in enumerate(sn.vertices):
            verts_poses = sn.static_structure.get_positions()[polyhedron]
            dists = self._pbcc.distances(sn.centers[i], verts_poses)
            site_vert_dists[i, :len(polyhedron)] = dists

        # -- Step 2: Compute landmark vectors
        logger.info("  - computing landmark vectors -")
        # Compute landmark vectors

        # The dimension of one landmark vector is the number of Voronoi regions
        shape = (n_frames * sn.n_mobile, self._landmark_dimension)

        with tempfile.NamedTemporaryFile() as mmap_backing:
            if self.force_no_memmap:
                self._landmark_vectors = np.empty(shape=shape, dtype=np.float)
            else:
                self._landmark_vectors = np.memmap(mmap_backing.name,
                                                   mode='w+',
                                                   dtype=np.float,
                                                   shape=shape)

            helpers._fill_landmark_vectors(
                self,
                sn,
                verts_np,
                site_vert_dists,
                frames,
                check_for_zeros=self.check_for_zero_landmarks,
                tqdm=tqdm,
                logger=logger)

            if not self.check_for_zero_landmarks and self.n_all_zero_lvecs > 0:
                logger.warning(
                    "     Had %i all-zero landmark vectors; no error because `check_for_zero_landmarks = False`."
                    % self.n_all_zero_lvecs)
            elif self.check_for_zero_landmarks:
                assert self.n_all_zero_lvecs == 0

            # -- Step 3: Cluster landmark vectors
            logger.info("  - clustering landmark vectors -")

            #  - Cluster -
            # FIXME: remove reload after development done
            clustermod = importlib.import_module("..cluster." +
                                                 self._cluster_algo,
                                                 package=__name__)
            importlib.reload(clustermod)
            cluster_func = clustermod.do_landmark_clustering

            clustering = \
                cluster_func(self._landmark_vectors,
                             clustering_params = self._clustering_params,
                             min_samples = self._minimum_site_occupancy / float(sn.n_mobile),
                             verbose = self.verbose)

        cluster_counts = clustering[LandmarkAnalysis.CLUSTERING_CLUSTER_SIZE]
        lmk_lbls = clustering[LandmarkAnalysis.CLUSTERING_LABELS]
        lmk_confs = clustering[LandmarkAnalysis.CLUSTERING_CONFIDENCES]
        if LandmarkAnalysis.CLUSTERING_LANDMARK_GROUPINGS in clustering:
            landmark_clusters = clustering[
                LandmarkAnalysis.CLUSTERING_LANDMARK_GROUPINGS]
            assert len(cluster_counts) == len(landmark_clusters)
        else:
            landmark_clusters = None
        if LandmarkAnalysis.CLUSTERING_REPRESENTATIVE_LANDMARKS in clustering:
            rep_lvecs = np.asarray(clustering[
                LandmarkAnalysis.CLUSTERING_REPRESENTATIVE_LANDMARKS])
            assert rep_lvecs.shape == (len(cluster_counts),
                                       self._landmark_vectors.shape[1])
        else:
            rep_lvecs = None

        logging.info(
            "    Failed to assign %i%% of mobile particle positions to sites."
            % (100.0 * np.sum(lmk_lbls < 0) / float(len(lmk_lbls))))

        # reshape lables and confidences
        lmk_lbls.shape = (n_frames, sn.n_mobile)
        lmk_confs.shape = (n_frames, sn.n_mobile)

        n_sites = len(cluster_counts)

        if n_sites < (sn.n_mobile / self.max_mobile_per_site):
            raise InsufficientSitesError(verb="Landmark analysis",
                                         n_sites=n_sites,
                                         n_mobile=sn.n_mobile)

        logging.info("    Identified %i sites with assignment counts %s" %
                     (n_sites, cluster_counts))

        # -- Do output
        out_sn = sn.copy()
        # - Compute site centers
        site_centers = np.empty(shape=(n_sites, 3), dtype=frames.dtype)
        if self.site_centers_method == LandmarkAnalysis.SITE_CENTERS_REAL_WEIGHTED or \
           self.site_centers_method == LandmarkAnalysis.SITE_CENTERS_REAL_UNWEIGHTED:
            for site in range(n_sites):
                mask = lmk_lbls == site
                pts = frames[:, sn.mobile_mask][mask]
                if self.site_centers_method == LandmarkAnalysis.SITE_CENTERS_REAL_WEIGHTED:
                    site_centers[site] = self._pbcc.average(
                        pts, weights=lmk_confs[mask])
                else:
                    site_centers[site] = self._pbcc.average(pts)
        elif self.site_centers_method == LandmarkAnalysis.SITE_CENTERS_REPRESENTATIVE_LANDMARK:
            if rep_lvecs is None:
                raise ValueError(
                    "Chosen clustering method (with current parameters) didn't return representative landmark vectors; can't use SITE_CENTERS_REPRESENTATIVE_LANDMARK."
                )
            for site in range(n_sites):
                weights_nonzero = rep_lvecs[site] > 0
                site_centers[site] = self._pbcc.average(
                    sn.centers[weights_nonzero],
                    weights=rep_lvecs[site, weights_nonzero])
        else:
            raise ValueError("Invalid site centers method '%s'" %
                             self.site_centers_method)
        out_sn.centers = site_centers
        # - If clustering gave us that, compute site vertices
        if landmark_clusters is not None:
            vertices = []
            for lclust in landmark_clusters:
                vertices.append(
                    set.union(*[set(sn.vertices[l]) for l in lclust]))
            out_sn.vertices = vertices

        out_st = SiteTrajectory(out_sn, lmk_lbls, lmk_confs)

        # Check that multiple particles are never assigned to one site at the
        # same time, cause that would be wrong.
        self.n_multiple_assignments, self.avg_mobile_per_site = out_st.check_multiple_occupancy(
            max_mobile_per_site=self.max_mobile_per_site)

        out_st.set_real_traj(orig_frames)
        self._has_run = True

        return out_st
예제 #9
0
def periodic_voronoi(structure, logfile=sys.stdout):
    """
    :param ASE.Atoms structure:
    """

    pbcc = PBCCalculator(structure.cell)

    # Make a 3x3x3 supercell
    supercell = structure.repeat((3, 3, 3))

    qhull_output = None

    logfile.write("Qvoronoi ---")

    # Run qhull
    with tempfile.NamedTemporaryFile('w',
                                     prefix = 'qvor',
                                     suffix='.in', delete = False) as infile, \
         tempfile.NamedTemporaryFile('r',
                                     prefix = 'qvor',
                                     suffix='.out',
                                     delete=True) as outfile:
        #  -- Write input file --
        infile.write("3\n")  # num of dimensions
        infile.write("%i\n" % len(supercell))  # num of points
        np.savetxt(infile, supercell.get_positions(), fmt='%.16f')
        infile.flush()

        cmdline = [
            "qvoronoi", "TI", infile.name, "FF", "Fv", "TO", outfile.name
        ]
        process = subprocess.Popen(cmdline,
                                   stdout=subprocess.PIPE,
                                   stderr=subprocess.STDOUT)
        retcode = process.wait()
        logfile.write(process.stdout.read())
        if retcode != 0:
            raise RuntimeError("qvoronoi returned exit code %i" % retcode)

        qhull_output = outfile.read()

    facets_regex = re.compile(
        """
                -[ \t](?P<facetkey>f[0-9]+)  [\n]
                [ \t]*-[ ]flags: .* [\n]
                [ \t]*-[ ]normal: .* [\n]
                [ \t]*-[ ]offset: .* [\n]
                [ \t]*-[ ]center:(?P<center>([ ][\-]?[0-9]*[\.]?[0-9]*(e[-?[0-9]+)?){3}) [ \t] [\n]
                [ \t]*-[ ]vertices:(?P<vertices>([ ]p[0-9]+\(v[0-9]+\))+) [ \t]? [\n]
                [ \t]*-[ ]neighboring[ ]facets:(?P<neighbors>([ ]f[0-9]+)+)
                """, re.X | re.M)

    vertices_re = re.compile('(?<=p)[0-9]+')

    # Allocate stuff
    centers = []
    vertices = []
    facet_indexes_taken = set()

    facet_index_to_our_index = {}
    all_facets_centers = []

    # ---- Read facets
    facet_index = -1
    next_our_index = 0
    for facet_match in facets_regex.finditer(qhull_output):
        center = np.asarray(map(float, facet_match.group('center').split()))
        facet_index += 1

        all_facets_centers.append(center)

        if not pbcc.is_in_image_of_cell(center, (1, 1, 1)):
            continue

        verts = map(int, vertices_re.findall(facet_match.group('vertices')))
        verts_in_main_cell = tuple(v % len(structure) for v in verts)

        facet_indexes_taken.add(facet_index)

        centers.append(center)
        vertices.append(verts_in_main_cell)

        facet_index_to_our_index[facet_index] = next_our_index

        next_our_index += 1

        end_of_facets = facet_match.end()

    facet_count = facet_index + 1

    logfile.write("  qhull gave %i vertices; kept %i" %
                  (facet_count, len(centers)))

    # ---- Read ridges
    qhull_output_after_facets = qhull_output[end_of_facets:].strip()
    ridge_re = re.compile('^\d+ \d+ \d+(?P<verts>( \d+)+)$', re.M)

    ridges = [[int(v) for v in match.group('verts').split()]
              for match in ridge_re.finditer(qhull_output_after_facets)]
    # only take ridges with at least 1 facet in main unit cell.
    ridges = [r for r in ridges if any(f in facet_indexes_taken for f in r)]

    # shift centers back into normal unit cell
    centers -= np.sum(structure.cell, axis=0)

    nearest_center = KDTree(centers)

    ridges_in_main_cell = set()
    threw_out = 0
    for r in ridges:
        ridge_centers = np.asarray(
            [all_facets_centers[f] for f in r if f < len(all_facets_centers)])
        if not pbcc.all_in_unit_cell(ridge_centers):
            continue

        pbcc.wrap_points(ridge_centers)
        dists, ridge_centers_in_main = nearest_center.query(
            ridge_centers, return_distance=True)

        if np.any(dists > 0.00001):
            threw_out += 1
            continue

        assert ridge_centers_in_main.shape == (
            len(ridge_centers), 1), "%s" % ridge_centers_in_main.shape
        ridge_centers_in_main = ridge_centers_in_main[:, 0]

        ridges_in_main_cell.add(frozenset(ridge_centers_in_main))

    logfile.write("  Threw out %i ridges" % threw_out)

    logfile.flush()

    return centers, vertices, ridges_in_main_cell