bottom=False, left=False, # top=False, labelbottom=False, labelleft=False, # length=0, ) P = np.zeros(len(bonds)) size = np.zeros(len(bonds)) s = np.zeros(len(bonds)) pvec = np.zeros(len(bonds)) j = 0 for i in range(nn): for bond in bonds[i * step:(i + 1) * step]: sites.activate([bond]) P[j] = sites.giantComponent s[j] = sites.averageSquaredSize size[j] = sites.sizeOfLargestCluster pvec[j] = j / len(bonds) j += 1 print("start: {}, stop: {}, index: {}".format(i * step, (i + 1) * step, i)) image = sites.makeImage() ax.imshow(image, aspect="equal", origin="upper", vmin=0, vmax=1, cmap="Purples")
for L in [100, 200]: N = L*L nBonds = 2*N its = 100 # number of iterations P = np.zeros([nBonds, its]) P2 = np.zeros([nBonds, its]) # P_inf**2 size = np.zeros([nBonds, its]) s = np.zeros([nBonds, its]) p = np.zeros(nBonds) for j in range(its): sites = Sites(L, L) bonds = makeSquareLattice(L, L) bonds = shuffleList(bonds) for i in range(nBonds): sites.activate([bonds[i]]) P[i, j] = sites.giantComponent P2[i, j] = pow(sites.giantComponent/N, 2) s[i, j] = sites.averageSquaredSize size[i, j] = sites.sizeOfLargestCluster p[i] = i/nBonds # p[i] = (N - np.sum(sites.sites == -1))/N P = np.mean(P, axis=1) P2 = np.mean(P2, axis=1) s = np.mean(s, axis=1) size = np.mean(size, axis=1)