X_std = train_data.X_std valid_data = TIMIT(name='valid', path=data_path, frame_size=frame_size, shuffle=0, use_n_gram=1, X_mean=X_mean, X_std=X_std) init_W = InitCell('rand') init_U = InitCell('ortho') init_b = InitCell('zeros') init_b_sig = InitCell('const', mean=0.6) x, x_mask = train_data.theano_vars() if debug: x.tag.test_value = np.zeros((15, batch_size, frame_size), dtype=np.float32) temp = np.ones((15, batch_size), dtype=np.float32) temp[:, -2:] = 0. x_mask.tag.test_value = temp x_1 = FullyConnectedLayer(name='x_1', parent=['x_t'], parent_dim=[frame_size], nout=x2s_dim, unit='relu', init_W=init_W, init_b=init_b) x_2 = FullyConnectedLayer(name='x_2',
shuffle=0, use_n_gram=1, X_mean=X_mean, X_std=X_std) exp = unpickle(exp_path + exp_name + '_best.pkl') nodes = exp.model.nodes names = [node.name for node in nodes] output = GaussianLayer(name='output', parent=['theta_mu', 'theta_sig'], use_sample=1, nout=frame_size) x, y, spk_info, mask = train_data.theano_vars() if debug: x.tag.test_value = np.zeros((15, batch_size, frame_size), dtype=np.float32) y.tag.test_value = np.zeros((15, batch_size, label_size), dtype=np.float32) temp = np.ones((15, batch_size), dtype=np.float32) temp[:, -2:] = 0. mask.tag.test_value = temp spk_info.tag.test_value = np.zeros((batch_size, 630), dtype=np.float32) [main_lstm, prior, kl, x_1, x_2, x_3, x_4, z_1, z_2, z_3, z_4, y_1, y_2, y_3, y_4, phi_1, phi_2, phi_3, phi_4, phi_mu, phi_sig, prior_1, prior_2, prior_3, prior_4, prior_mu, prior_sig, theta_1, theta_2, theta_3, theta_4, theta_mu, theta_sig] = nodes