def setUp(self): """Prep the self""" self.simple_t = TreeNode.read(StringIO(u"((a,b)i1,(c,d)i2)root;")) nodes = dict([(x, TreeNode(x)) for x in 'abcdefgh']) nodes['a'].append(nodes['b']) nodes['b'].append(nodes['c']) nodes['c'].append(nodes['d']) nodes['c'].append(nodes['e']) nodes['c'].append(nodes['f']) nodes['f'].append(nodes['g']) nodes['a'].append(nodes['h']) self.TreeNode = nodes self.TreeRoot = nodes['a'] def rev_f(items): items.reverse() def rotate_f(items): tmp = items[-1] items[1:] = items[:-1] items[0] = tmp self.rev_f = rev_f self.rotate_f = rotate_f self.complex_tree = TreeNode.read( StringIO(u"(((a,b)int1,(x,y,(w,z)int" "2,(c,d)int3)int4),(e,f)int" "5);"))
def test_tip_tip_distances_missing_length(self): t = TreeNode.read(StringIO(u"((a,b:6)c:4,(d,e:0)f);")) exp_t = TreeNode.read(StringIO(u"((a:0,b:6)c:4,(d:0,e:0)f:0);")) exp_t_dm = exp_t.tip_tip_distances() t_dm = npt.assert_warns(RepresentationWarning, t.tip_tip_distances) self.assertEqual(t_dm, exp_t_dm)
def test_validate_otu_ids_and_tree(self): # basic valid input t = TreeNode.read( StringIO(u'(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:' u'0.75,OTU5:0.75):1.25):0.0)root;')) counts = [1, 1, 1] otu_ids = ['OTU1', 'OTU2', 'OTU3'] self.assertTrue(_validate_otu_ids_and_tree(counts, otu_ids, t) is None) # all tips observed t = TreeNode.read( StringIO(u'(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:' u'0.75,OTU5:0.75):1.25):0.0)root;')) counts = [1, 1, 1, 1, 1] otu_ids = ['OTU1', 'OTU2', 'OTU3', 'OTU4', 'OTU5'] self.assertTrue(_validate_otu_ids_and_tree(counts, otu_ids, t) is None) # no tips observed t = TreeNode.read( StringIO(u'(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:' u'0.75,OTU5:0.75):1.25):0.0)root;')) counts = [] otu_ids = [] self.assertTrue(_validate_otu_ids_and_tree(counts, otu_ids, t) is None) # all counts zero t = TreeNode.read( StringIO(u'(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:' u'0.75,OTU5:0.75):1.25):0.0)root;')) counts = [0, 0, 0, 0, 0] otu_ids = ['OTU1', 'OTU2', 'OTU3', 'OTU4', 'OTU5'] self.assertTrue(_validate_otu_ids_and_tree(counts, otu_ids, t) is None)
def test_index_tree(self): """index_tree should produce correct index and node map""" # test for first tree: contains singleton outgroup t1 = TreeNode.read(StringIO(u'(((a,b),c),(d,e));')) t2 = TreeNode.read(StringIO(u'(((a,b),(c,d)),(e,f));')) t3 = TreeNode.read(StringIO(u'(((a,b,c),(d)),(e,f));')) id_1, child_1 = t1.index_tree() nodes_1 = [ n.id for n in t1.traverse(self_before=False, self_after=True) ] self.assertEqual(nodes_1, [0, 1, 2, 3, 6, 4, 5, 7, 8]) npt.assert_equal( child_1, np.array([[2, 0, 1], [6, 2, 3], [7, 4, 5], [8, 6, 7]])) # test for second tree: strictly bifurcating id_2, child_2 = t2.index_tree() nodes_2 = [ n.id for n in t2.traverse(self_before=False, self_after=True) ] self.assertEqual(nodes_2, [0, 1, 4, 2, 3, 5, 8, 6, 7, 9, 10]) npt.assert_equal( child_2, np.array([[4, 0, 1], [5, 2, 3], [8, 4, 5], [9, 6, 7], [10, 8, 9]])) # test for third tree: contains trifurcation and single-child parent id_3, child_3 = t3.index_tree() nodes_3 = [ n.id for n in t3.traverse(self_before=False, self_after=True) ] self.assertEqual(nodes_3, [0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10]) npt.assert_equal( child_3, np.array([[4, 0, 2], [5, 3, 3], [8, 4, 5], [9, 6, 7], [10, 8, 9]]))
def test_compare_subsets(self): """compare_subsets should return the fraction of shared subsets""" t = TreeNode.read(StringIO(u'((H,G),(R,M));')) t2 = TreeNode.read(StringIO(u'(((H,G),R),M);')) t4 = TreeNode.read(StringIO(u'(((H,G),(O,R)),X);')) result = t.compare_subsets(t) self.assertEqual(result, 0) result = t2.compare_subsets(t2) self.assertEqual(result, 0) result = t.compare_subsets(t2) self.assertEqual(result, 0.5) result = t.compare_subsets(t4) self.assertEqual(result, 1 - 2. / 5) result = t.compare_subsets(t4, exclude_absent_taxa=True) self.assertEqual(result, 1 - 2. / 3) result = t.compare_subsets(self.TreeRoot, exclude_absent_taxa=True) self.assertEqual(result, 1) result = t.compare_subsets(self.TreeRoot) self.assertEqual(result, 1)
def test_majority_rule(self): trees = [ TreeNode.read(StringIO("(A,(B,(H,(D,(J,(((G,E),(F,I)),C))))));")), TreeNode.read(StringIO("(A,(B,(D,((J,H),(((G,E),(F,I)),C)))));")), TreeNode.read(StringIO("(A,(B,(D,(H,(J,(((G,E),(F,I)),C))))));")), TreeNode.read(StringIO("(A,(B,(E,(G,((F,I),((J,(H,D)),C))))));")), TreeNode.read(StringIO("(A,(B,(E,(G,((F,I),(((J,H),D),C))))));")), TreeNode.read(StringIO("(A,(B,(E,((F,I),(G,((J,(H,D)),C))))));")), TreeNode.read(StringIO("(A,(B,(E,((F,I),(G,(((J,H),D),C))))));")), TreeNode.read(StringIO("(A,(B,(E,((G,(F,I)),((J,(H,D)),C)))));")), TreeNode.read(StringIO("(A,(B,(E,((G,(F,I)),(((J,H),D),C)))));")) ] exp = TreeNode.read(StringIO("(((E,(G,(F,I),(C,(D,J,H)))),B),A);")) obs = majority_rule(trees) self.assertEqual(exp.compare_subsets(obs[0]), 0.0) self.assertEqual(len(obs), 1) tree = obs[0] exp_supports = sorted([9.0, 9.0, 9.0, 6.0, 6.0, 6.0]) obs_supports = sorted([n.support for n in tree.non_tips()]) self.assertEqual(obs_supports, exp_supports) obs = majority_rule(trees, weights=np.ones(len(trees)) * 2) self.assertEqual(exp.compare_subsets(obs[0]), 0.0) self.assertEqual(len(obs), 1) tree = obs[0] exp_supports = sorted([18.0, 18.0, 12.0, 18.0, 12.0, 12.0]) obs_supports = sorted([n.support for n in tree.non_tips()]) with self.assertRaises(ValueError): majority_rule(trees, weights=[1, 2])
def test_extend(self): """Extend a few nodes""" second_tree = TreeNode.read(StringIO(u"(x1,y1)z1;")) third_tree = TreeNode.read(StringIO(u"(x2,y2)z2;")) first_tree = TreeNode.read(StringIO(u"(x1,y1)z1;")) fourth_tree = TreeNode.read(StringIO(u"(x2,y2)z2;")) self.simple_t.extend([second_tree, third_tree]) first_tree.extend(fourth_tree.children) self.assertEqual(0, len(fourth_tree.children)) self.assertEqual(first_tree.children[0].name, 'x1') self.assertEqual(first_tree.children[1].name, 'y1') self.assertEqual(first_tree.children[2].name, 'x2') self.assertEqual(first_tree.children[3].name, 'y2') self.assertEqual(self.simple_t.children[0].name, 'i1') self.assertEqual(self.simple_t.children[1].name, 'i2') self.assertEqual(self.simple_t.children[2].name, 'z1') self.assertEqual(self.simple_t.children[3].name, 'z2') self.assertEqual(len(self.simple_t.children), 4) self.assertEqual(self.simple_t.children[2].children[0].name, 'x1') self.assertEqual(self.simple_t.children[2].children[1].name, 'y1') self.assertEqual(self.simple_t.children[3].children[0].name, 'x2') self.assertEqual(self.simple_t.children[3].children[1].name, 'y2') self.assertIs(second_tree.parent, self.simple_t) self.assertIs(third_tree.parent, self.simple_t)
def test_newick_to_tree_node_invalid_files(self): for invalid, error_fragments in self.invalid_newicks: fh = StringIO(invalid) with self.assertRaises(NewickFormatError) as cm: _newick_to_tree_node(fh) for frag in error_fragments: self.assertIn(frag, str(cm.exception)) fh.close()
def test_tree_node_to_newick(self): for tree, newicks in self.trees_newick_lists: newick = newicks[0] fh = StringIO() _tree_node_to_newick(tree, fh) self.assertEqual(newick, fh.getvalue()) fh.close()
def test_newick_to_tree_node_valid_files(self): for tree, newicks in self.trees_newick_lists: for newick in newicks: fh = StringIO(newick) read_tree = _newick_to_tree_node(fh) self._assert_equal(tree, read_tree) fh.close()
def test_compare_tip_distances(self): t = TreeNode.read(StringIO(u'((H:1,G:1):2,(R:0.5,M:0.7):3);')) t2 = TreeNode.read(StringIO(u'(((H:1,G:1,O:1):2,R:3):1,X:4);')) obs = t.compare_tip_distances(t2) # note: common taxa are H, G, R (only) m1 = np.array([[0, 2, 6.5], [2, 0, 6.5], [6.5, 6.5, 0]]) m2 = np.array([[0, 2, 6], [2, 0, 6], [6, 6, 0]]) r = pearsonr(m1.flat, m2.flat)[0] self.assertAlmostEqual(obs, (1 - r) / 2)
def test_tip_tip_distances_no_length(self): t = TreeNode.read(StringIO(u"((a,b)c,(d,e)f);")) exp_t = TreeNode.read(StringIO(u"((a:0,b:0)c:0,(d:0,e:0)f:0);")) exp_t_dm = exp_t.tip_tip_distances() t_dm = npt.assert_warns(RepresentationWarning, t.tip_tip_distances) self.assertEqual(t_dm, exp_t_dm) for node in t.preorder(): self.assertIs(node.length, None)
def test_root_at_midpoint_tie(self): nwk = u"(((a:1,b:1)c:2,(d:3,e:4)f:5),g:1)root;" t = TreeNode.read(StringIO(nwk)) exp = u"((d:3,e:4)f:2,((a:1,b:1)c:2,(g:1)):3)root;" texp = TreeNode.read(StringIO(exp)) obs = t.root_at_midpoint() for o, e in zip(obs.traverse(), texp.traverse()): self.assertEqual(o.name, e.name) self.assertEqual(o.length, e.length)
def test_walk_clades(self): trees = [ TreeNode.read(StringIO("((A,B),(D,E));")), TreeNode.read(StringIO("((A,B),(D,(E,X)));")) ] exp_clades = [(frozenset(['A']), 2.0), (frozenset(['B']), 2.0), (frozenset(['A', 'B']), 2.0), (frozenset(['D', 'E']), 1.0), (frozenset(['D', 'E', 'A', 'B']), 1.0), (frozenset(['D']), 2.0), (frozenset(['E']), 2.0), (frozenset(['X']), 1.0), (frozenset(['E', 'X']), 1.0), (frozenset(['D', 'E', 'X']), 1.0), (frozenset(['A', 'B', 'D', 'E', 'X']), 1.0)] exp_lengths_nolength = { frozenset(['A']): None, frozenset(['B']): None, frozenset(['A', 'B']): None, frozenset(['D', 'E']): None, frozenset(['D', 'E', 'A', 'B']): None, frozenset(['D']): None, frozenset(['E']): None, frozenset(['X']): None, frozenset(['E', 'X']): None, frozenset(['D', 'E', 'X']): None, frozenset(['A', 'B', 'D', 'E', 'X']): None } exp_lengths = { frozenset(['A']): 2.0, frozenset(['B']): 2.0, frozenset(['A', 'B']): 2.0, frozenset(['D', 'E']): 1.0, frozenset(['D', 'E', 'A', 'B']): 1.0, frozenset(['D']): 2.0, frozenset(['E']): 2.0, frozenset(['X']): 1.0, frozenset(['E', 'X']): 1.0, frozenset(['D', 'E', 'X']): 1.0, frozenset(['A', 'B', 'D', 'E', 'X']): 1.0 } obs_clades, obs_lengths = _walk_clades(trees, np.ones(len(trees))) self.assertEqual(set(obs_clades), set(exp_clades)) self.assertEqual(obs_lengths, exp_lengths_nolength) for t in trees: for n in t.traverse(include_self=True): n.length = 2.0 obs_clades, obs_lengths = _walk_clades(trees, np.ones(len(trees))) self.assertEqual(set(obs_clades), set(exp_clades)) self.assertEqual(obs_lengths, exp_lengths)
def test_newick_to_tree_node_convert_underscores(self): fh = StringIO('(_:0.1, _a, _b)__;') tree = _newick_to_tree_node(fh, convert_underscores=False) fh2 = StringIO() _tree_node_to_newick(tree, fh2) self.assertEqual(fh2.getvalue(), "('_':0.1,'_a','_b')'__';\n") fh2.close() fh.close()
def test_bifurcate(self): t1 = TreeNode.read(StringIO(u'(((a,b),c),(d,e));')) t2 = TreeNode.read(StringIO(u'((a,b,c));')) t3 = t2.copy() t1.bifurcate() t2.bifurcate() t3.bifurcate(insert_length=0) self.assertEqual(str(t1), '(((a,b),c),(d,e));\n') self.assertEqual(str(t2), '((c,(a,b)));\n') self.assertEqual(str(t3), '((c,(a,b):0));\n')
def test_find_by_id(self): """Find a node by id""" t1 = TreeNode.read(StringIO(u"((,),(,,));")) t2 = TreeNode.read(StringIO(u"((,),(,,));")) exp = t1.children[1] obs = t1.find_by_id(6) # right inner node with 3 children self.assertEqual(obs, exp) exp = t2.children[1] obs = t2.find_by_id(6) # right inner node with 3 children self.assertEqual(obs, exp) with self.assertRaises(MissingNodeError): t1.find_by_id(100)
def setUp(self): self.table1 = np.array([[1, 3, 0, 1, 0], [0, 2, 0, 4, 4], [0, 0, 6, 2, 1], [0, 0, 1, 1, 1]]) self.sids1 = list('ABCD') self.oids1 = ['OTU%d' % i for i in range(1, 6)] self.tree1 = TreeNode.read( StringIO(u'(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):' u'0.0,(OTU4:0.75,OTU5:0.75):1.25):0.0)root;')) self.table2 = np.array([[1, 3], [0, 2], [0, 0]]) self.sids2 = list('xyz') self.oids2 = ['OTU1', 'OTU5'] self.tree2 = TreeNode.read( StringIO(u'(((((OTU1:42.5,OTU2:0.5):0.5,OTU3:1.0):1.0):' u'0.0,(OTU4:0.75,OTU5:0.0001):1.25):0.0)root;'))
def test_compare_tip_distances_sample(self): t = TreeNode.read(StringIO(u'((H:1,G:1):2,(R:0.5,M:0.7):3);')) t2 = TreeNode.read(StringIO(u'(((H:1,G:1,O:1):2,R:3):1,X:4);')) obs = t.compare_tip_distances(t2, sample=3, shuffle_f=sorted) # note: common taxa are H, G, R (only) m1 = np.array([[0, 2, 6.5], [2, 0, 6.5], [6.5, 6.5, 0]]) m2 = np.array([[0, 2, 6], [2, 0, 6], [6, 6, 0]]) r = pearsonr(m1.flat, m2.flat)[0] self.assertAlmostEqual(obs, (1 - r) / 2) # 4 common taxa, still picking H, G, R s = u'((H:1,G:1):2,(R:0.5,M:0.7,Q:5):3);' t = TreeNode.read(StringIO(s)) s3 = u'(((H:1,G:1,O:1):2,R:3,Q:10):1,X:4);' t3 = TreeNode.read(StringIO(s3)) obs = t.compare_tip_distances(t3, sample=3, shuffle_f=sorted)
def test_get_max_distance(self): """get_max_distance should get max tip distance across tree""" tree = TreeNode.read( StringIO(u"((a:0.1,b:0.2)c:0.3,(d:0.4,e:0.5)f:0.6)root;")) dist, nodes = tree.get_max_distance() npt.assert_almost_equal(dist, 1.6) self.assertEqual(sorted([n.name for n in nodes]), ['b', 'e'])
def test_lowest_common_ancestor(self): """TreeNode lowestCommonAncestor should return LCA for set of tips""" t1 = TreeNode.read(StringIO(u"((a,(b,c)d)e,f,(g,h)i)j;")) t2 = t1.copy() t3 = t1.copy() t4 = t1.copy() input1 = ['a'] # return self input2 = ['a', 'b'] # return e input3 = ['b', 'c'] # return d input4 = ['a', 'h', 'g'] # return j exp1 = t1.find('a') exp2 = t2.find('e') exp3 = t3.find('d') exp4 = t4 obs1 = t1.lowest_common_ancestor(input1) obs2 = t2.lowest_common_ancestor(input2) obs3 = t3.lowest_common_ancestor(input3) obs4 = t4.lowest_common_ancestor(input4) self.assertEqual(obs1, exp1) self.assertEqual(obs2, exp2) self.assertEqual(obs3, exp3) self.assertEqual(obs4, exp4) # verify multiple calls work t_mul = t1.copy() exp_1 = t_mul.find('d') exp_2 = t_mul.find('i') obs_1 = t_mul.lowest_common_ancestor(['b', 'c']) obs_2 = t_mul.lowest_common_ancestor(['g', 'h']) self.assertEqual(obs_1, exp_1) self.assertEqual(obs_2, exp_2) # empty case with self.assertRaises(ValueError): t1.lowest_common_ancestor([])
def test_vectorize_counts_and_tree(self): t = TreeNode.read(StringIO(u"((a:1, b:2)c:3)root;")) counts = np.array([[0, 1], [1, 5], [10, 1]]) count_array, indexed, branch_lengths = \ _vectorize_counts_and_tree(counts, np.array(['a', 'b']), t) exp_counts = np.array([[0, 1, 10], [1, 5, 1], [1, 6, 11], [1, 6, 11]]) npt.assert_equal(count_array, exp_counts.T)
def test_set_max_distance(self): """set_max_distance sets MaxDistTips across tree""" tree = TreeNode.read( StringIO(u"((a:0.1,b:0.2)c:0.3,(d:0.4,e:0.5)f:0.6)root;")) tree._set_max_distance() tip_a, tip_b = tree.MaxDistTips self.assertEqual(tip_a[0] + tip_b[0], 1.6) self.assertEqual(sorted([tip_a[1].name, tip_b[1].name]), ['b', 'e'])
def setUp(self): data1 = [[0, 5, 9, 9, 8], [5, 0, 10, 10, 9], [9, 10, 0, 8, 7], [9, 10, 8, 0, 3], [8, 9, 7, 3, 0]] ids1 = list('abcde') self.dm1 = DistanceMatrix(data1, ids1) # this newick string was confirmed against http://www.trex.uqam.ca/ # which generated the following (isomorphic) newick string: # (d:2.0000,e:1.0000,(c:4.0000,(a:2.0000,b:3.0000):3.0000):2.0000); self.expected1_str = ("(d:2.000000, (c:4.000000, (b:3.000000," " a:2.000000):3.000000):2.000000, e:1.000000);") self.expected1_TreeNode = TreeNode.read(StringIO(self.expected1_str)) # this example was pulled from the Phylip manual # http://evolution.genetics.washington.edu/phylip/doc/neighbor.html data2 = [[0.0000, 1.6866, 1.7198, 1.6606, 1.5243, 1.6043, 1.5905], [1.6866, 0.0000, 1.5232, 1.4841, 1.4465, 1.4389, 1.4629], [1.7198, 1.5232, 0.0000, 0.7115, 0.5958, 0.6179, 0.5583], [1.6606, 1.4841, 0.7115, 0.0000, 0.4631, 0.5061, 0.4710], [1.5243, 1.4465, 0.5958, 0.4631, 0.0000, 0.3484, 0.3083], [1.6043, 1.4389, 0.6179, 0.5061, 0.3484, 0.0000, 0.2692], [1.5905, 1.4629, 0.5583, 0.4710, 0.3083, 0.2692, 0.0000]] ids2 = [ "Bovine", "Mouse", "Gibbon", "Orang", "Gorilla", "Chimp", "Human" ] self.dm2 = DistanceMatrix(data2, ids2) self.expected2_str = ("(Mouse:0.76891, (Gibbon:0.35793, (Orang:0.28469" ", (Gorilla:0.15393, (Chimp:0.15167, Human:0.117" "53):0.03982):0.02696):0.04648):0.42027, Bovine:" "0.91769);") self.expected2_TreeNode = TreeNode.read(StringIO(self.expected2_str)) data3 = [[0, 5, 4, 7, 6, 8], [5, 0, 7, 10, 9, 11], [4, 7, 0, 7, 6, 8], [7, 10, 7, 0, 5, 8], [6, 9, 6, 5, 0, 8], [8, 11, 8, 8, 8, 0]] ids3 = map(str, range(6)) self.dm3 = DistanceMatrix(data3, ids3) self.expected3_str = ("((((0:1.000000,1:4.000000):1.000000,2:2.000000" "):1.250000,5:4.750000):0.750000,3:2.750000,4:2." "250000);") self.expected3_TreeNode = TreeNode.read(StringIO(self.expected3_str)) # this dm can yield negative branch lengths data4 = [[0, 5, 9, 9, 800], [5, 0, 10, 10, 9], [9, 10, 0, 8, 7], [9, 10, 8, 0, 3], [800, 9, 7, 3, 0]] ids4 = list('abcde') self.dm4 = DistanceMatrix(data4, ids4)
def test_assign_ids(self): """Assign IDs to the tree""" t1 = TreeNode.read(StringIO(u"(((a,b),c),(e,f),(g));")) t2 = TreeNode.read(StringIO(u"(((a,b),c),(e,f),(g));")) t3 = TreeNode.read(StringIO(u"((g),(e,f),(c,(a,b)));")) t1_copy = t1.copy() t1.assign_ids() t2.assign_ids() t3.assign_ids() t1_copy.assign_ids() self.assertEqual([(n.name, n.id) for n in t1.traverse()], [(n.name, n.id) for n in t2.traverse()]) self.assertEqual([(n.name, n.id) for n in t1.traverse()], [(n.name, n.id) for n in t1_copy.traverse()]) self.assertNotEqual([(n.name, n.id) for n in t1.traverse()], [(n.name, n.id) for n in t3.traverse()])
def test_compare_rfd(self): """compare_rfd should return the Robinson Foulds distance""" t = TreeNode.read(StringIO(u'((H,G),(R,M));')) t2 = TreeNode.read(StringIO(u'(((H,G),R),M);')) t4 = TreeNode.read(StringIO(u'(((H,G),(O,R)),X);')) obs = t.compare_rfd(t2) exp = 2.0 self.assertEqual(obs, exp) self.assertEqual(t.compare_rfd(t2), t2.compare_rfd(t)) obs = t.compare_rfd(t2, proportion=True) exp = 0.5 self.assertEqual(obs, exp) with self.assertRaises(ValueError): t.compare_rfd(t4)
def test_roundtrip(self): for tree, newicks in self.trees_newick_lists: newick = newicks[0] fh = StringIO(newick) tree = _newick_to_tree_node(fh) fh2 = StringIO() _tree_node_to_newick(tree, fh2) fh2.seek(0) tree2 = _newick_to_tree_node(fh2) self.assertEqual(newick, fh2.getvalue()) self._assert_equal(tree, tree2) fh.close() fh2.close()
def test_invalidate_attr_caches(self): tree = TreeNode.read(StringIO(u"((a,b,(c,d)e)f,(g,h)i)root;")) def f(n): return [n.name] if n.is_tip() else [] tree.cache_attr(f, 'tip_names') tree.invalidate_caches() for n in tree.traverse(include_self=True): self.assertFalse(hasattr(n, 'tip_names'))
def test_root_at(self): """Form a new root""" t = TreeNode.read(StringIO(u"(((a,b)c,(d,e)f)g,h)i;")) with self.assertRaises(TreeError): t.root_at(t.find('h')) exp = "(a,b,((d,e)f,(h)g)c)root;\n" rooted = t.root_at('c') obs = str(rooted) self.assertEqual(obs, exp)
def test_has_children(self): """Test if has children""" t = TreeNode.read(StringIO(u"((a,b)c,(d,e)f);")) self.assertTrue(t.has_children()) self.assertTrue(t.children[0].has_children()) self.assertTrue(t.children[1].has_children()) self.assertFalse(t.children[0].children[0].has_children()) self.assertFalse(t.children[0].children[1].has_children()) self.assertFalse(t.children[1].children[0].has_children()) self.assertFalse(t.children[1].children[1].has_children())
def test_find_by_func(self): """Find nodes by a function""" t = TreeNode.read(StringIO(u"((a,b)c,(d,e)f);")) def func(x): return x.parent == t.find('c') exp = ['a', 'b'] obs = [n.name for n in t.find_by_func(func)] self.assertEqual(obs, exp)
def test_roundtrip_read_write(self): for reader_fn, writer_fn, fhs in ( (_lsmat_to_dissimilarity_matrix, _dissimilarity_matrix_to_lsmat, self.dissim_fhs), (_lsmat_to_distance_matrix, _distance_matrix_to_lsmat, self.dist_fhs), ): for fh in fhs: # Read. fh.seek(0) lsmat1 = reader_fn(fh) # Write. out_fh = StringIO() writer_fn(lsmat1, out_fh) out_fh.seek(0) # Read. lsmat2 = reader_fn(out_fh) out_fh.close() self.assertEqual(lsmat1, lsmat2)
def test_write(self): for fn, objs, strs in ( (_dissimilarity_matrix_to_lsmat, self.dissim_objs, self.dissim_strs), (_distance_matrix_to_lsmat, self.dist_objs, self.dist_strs), ): for obj, str_ in zip(objs, strs): fh = StringIO() fn(obj, fh) obs = fh.getvalue() fh.close() self.assertEqual(obs, str_) # Test writing CSV (TSV is written above). for fn, cls in ( (_dissimilarity_matrix_to_lsmat, DissimilarityMatrix), (_distance_matrix_to_lsmat, DistanceMatrix), ): obj = cls(self.lsmat_3x3_data, ["a", "b", "c"]) fh = StringIO() fn(obj, fh, delimiter=",") obs = fh.getvalue() fh.close() self.assertEqual(obs, LSMat_3x3_CSV)
def test_newick_sniffer_valid_files(self): for _, newicks in self.trees_newick_lists: for newick in newicks: fh = StringIO(newick) self.assertEqual(_newick_sniffer(fh), (True, {})) fh.close()
def test_newick_sniffer_invalid_files(self): for invalid, _ in self.invalid_newicks: fh = StringIO(invalid) self.assertEqual(_newick_sniffer(fh), (False, {})) fh.close()