def get_estimator(self, idx): """Extract a single estimator tree from the forest. :param int idx: The index of the tree to extract. """ check_is_fitted(self) if not self.enable_tree_details: raise ValueError( "enable_tree_details must be True prior to training") return GRFTreeRegressor.from_forest(self, idx=idx)
def estimators_(self): try: check_is_fitted(self) except NotFittedError: raise AttributeError( f"{self.__class__.__name__} object has no attribute 'estimators_'" ) from None if not self.enable_tree_details: raise ValueError( "enable_tree_details must be True prior to training") return [ GRFTreeRegressor.from_forest(self, idx=idx) for idx in range(self.n_estimators) ]
def test_from_forest(self, boston_X, boston_y): forest = GRFForestRegressor() forest.fit(boston_X, boston_y) tree = GRFTreeRegressor.from_forest(forest=forest, idx=0) tree.predict(boston_X)