예제 #1
0
def test_sum():
    # check the number of valid pixels in the neighborhood

    image8 = np.array(
        [[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]], dtype=np.uint8
    )
    image16 = 400 * np.array(
        [[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]], dtype=np.uint16
    )
    elem = np.ones((3, 3), dtype=np.uint8)
    out8 = np.empty_like(image8)
    out16 = np.empty_like(image16)
    mask = np.ones(image8.shape, dtype=np.uint8)

    r = np.array([[1, 2, 3, 2, 1], [2, 4, 6, 4, 2], [3, 6, 9, 6, 3], [2, 4, 6, 4, 2], [1, 2, 3, 2, 1]], dtype=np.uint8)
    rank.sum(image=image8, selem=elem, out=out8, mask=mask)
    assert_equal(r, out8)
    rank.sum_percentile(image=image8, selem=elem, out=out8, mask=mask, p0=0.0, p1=1.0)
    assert_equal(r, out8)
    rank.sum_bilateral(image=image8, selem=elem, out=out8, mask=mask, s0=255, s1=255)
    assert_equal(r, out8)

    r = 400 * np.array(
        [[1, 2, 3, 2, 1], [2, 4, 6, 4, 2], [3, 6, 9, 6, 3], [2, 4, 6, 4, 2], [1, 2, 3, 2, 1]], dtype=np.uint16
    )
    rank.sum(image=image16, selem=elem, out=out16, mask=mask)
    assert_equal(r, out16)
    rank.sum_percentile(image=image16, selem=elem, out=out16, mask=mask, p0=0.0, p1=1.0)
    assert_equal(r, out16)
    rank.sum_bilateral(image=image16, selem=elem, out=out16, mask=mask, s0=1000, s1=1000)
    assert_equal(r, out16)
예제 #2
0
def test_sum():
    # check the number of valid pixels in the neighborhood

    image8 = np.array([[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0],
                       [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]],
                      dtype=np.uint8)
    image16 = 400 * np.array(
        [[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0],
         [0, 0, 0, 0, 0]],
        dtype=np.uint16)
    elem = np.ones((3, 3), dtype=np.uint8)
    out8 = np.empty_like(image8)
    out16 = np.empty_like(image16)
    mask = np.ones(image8.shape, dtype=np.uint8)

    r = np.array([[1, 2, 3, 2, 1], [2, 4, 6, 4, 2], [3, 6, 9, 6, 3],
                  [2, 4, 6, 4, 2], [1, 2, 3, 2, 1]],
                 dtype=np.uint8)
    rank.sum(image=image8, selem=elem, out=out8, mask=mask)
    assert_equal(r, out8)
    rank.sum_percentile(image=image8,
                        selem=elem,
                        out=out8,
                        mask=mask,
                        p0=.0,
                        p1=1.)
    assert_equal(r, out8)
    rank.sum_bilateral(image=image8,
                       selem=elem,
                       out=out8,
                       mask=mask,
                       s0=255,
                       s1=255)
    assert_equal(r, out8)

    r = 400 * np.array([[1, 2, 3, 2, 1], [2, 4, 6, 4, 2], [3, 6, 9, 6, 3],
                        [2, 4, 6, 4, 2], [1, 2, 3, 2, 1]],
                       dtype=np.uint16)
    rank.sum(image=image16, selem=elem, out=out16, mask=mask)
    assert_equal(r, out16)
    rank.sum_percentile(image=image16,
                        selem=elem,
                        out=out16,
                        mask=mask,
                        p0=.0,
                        p1=1.)
    assert_equal(r, out16)
    rank.sum_bilateral(image=image16,
                       selem=elem,
                       out=out16,
                       mask=mask,
                       s0=1000,
                       s1=1000)
    assert_equal(r, out16)
예제 #3
0
        def check_all():
            selem = morphology.disk(1)
            refs = np.load(
                os.path.join(skimage.data_dir, "rank_filter_tests.npz"))

            assert_equal(refs["autolevel"], rank.autolevel(self.image, selem))
            assert_equal(refs["autolevel_percentile"],
                         rank.autolevel_percentile(self.image, selem))
            assert_equal(refs["bottomhat"], rank.bottomhat(self.image, selem))
            assert_equal(refs["equalize"], rank.equalize(self.image, selem))
            assert_equal(refs["gradient"], rank.gradient(self.image, selem))
            assert_equal(refs["gradient_percentile"],
                         rank.gradient_percentile(self.image, selem))
            assert_equal(refs["maximum"], rank.maximum(self.image, selem))
            assert_equal(refs["mean"], rank.mean(self.image, selem))
            assert_equal(refs["geometric_mean"],
                         rank.geometric_mean(self.image, selem)),
            assert_equal(refs["mean_percentile"],
                         rank.mean_percentile(self.image, selem))
            assert_equal(refs["mean_bilateral"],
                         rank.mean_bilateral(self.image, selem))
            assert_equal(refs["subtract_mean"],
                         rank.subtract_mean(self.image, selem))
            assert_equal(refs["subtract_mean_percentile"],
                         rank.subtract_mean_percentile(self.image, selem))
            assert_equal(refs["median"], rank.median(self.image, selem))
            assert_equal(refs["minimum"], rank.minimum(self.image, selem))
            assert_equal(refs["modal"], rank.modal(self.image, selem))
            assert_equal(refs["enhance_contrast"],
                         rank.enhance_contrast(self.image, selem))
            assert_equal(refs["enhance_contrast_percentile"],
                         rank.enhance_contrast_percentile(self.image, selem))
            assert_equal(refs["pop"], rank.pop(self.image, selem))
            assert_equal(refs["pop_percentile"],
                         rank.pop_percentile(self.image, selem))
            assert_equal(refs["pop_bilateral"],
                         rank.pop_bilateral(self.image, selem))
            assert_equal(refs["sum"], rank.sum(self.image, selem))
            assert_equal(refs["sum_bilateral"],
                         rank.sum_bilateral(self.image, selem))
            assert_equal(refs["sum_percentile"],
                         rank.sum_percentile(self.image, selem))
            assert_equal(refs["threshold"], rank.threshold(self.image, selem))
            assert_equal(refs["threshold_percentile"],
                         rank.threshold_percentile(self.image, selem))
            assert_equal(refs["tophat"], rank.tophat(self.image, selem))
            assert_equal(refs["noise_filter"],
                         rank.noise_filter(self.image, selem))
            assert_equal(refs["entropy"], rank.entropy(self.image, selem))
            assert_equal(refs["otsu"], rank.otsu(self.image, selem))
            assert_equal(refs["percentile"],
                         rank.percentile(self.image, selem))
            assert_equal(refs["windowed_histogram"],
                         rank.windowed_histogram(self.image, selem))
예제 #4
0
def check_all():
    np.random.seed(0)
    image = np.random.rand(25, 25)
    selem = morphology.disk(1)
    refs = np.load(os.path.join(skimage.data_dir, "rank_filter_tests.npz"))

    assert_equal(refs["autolevel"], rank.autolevel(image, selem))
    assert_equal(refs["autolevel_percentile"], rank.autolevel_percentile(image, selem))
    assert_equal(refs["bottomhat"], rank.bottomhat(image, selem))
    assert_equal(refs["equalize"], rank.equalize(image, selem))
    assert_equal(refs["gradient"], rank.gradient(image, selem))
    assert_equal(refs["gradient_percentile"], rank.gradient_percentile(image, selem))
    assert_equal(refs["maximum"], rank.maximum(image, selem))
    assert_equal(refs["mean"], rank.mean(image, selem))
    assert_equal(refs["mean_percentile"], rank.mean_percentile(image, selem))
    assert_equal(refs["mean_bilateral"], rank.mean_bilateral(image, selem))
    assert_equal(refs["subtract_mean"], rank.subtract_mean(image, selem))
    assert_equal(refs["subtract_mean_percentile"], rank.subtract_mean_percentile(image, selem))
    assert_equal(refs["median"], rank.median(image, selem))
    assert_equal(refs["minimum"], rank.minimum(image, selem))
    assert_equal(refs["modal"], rank.modal(image, selem))
    assert_equal(refs["enhance_contrast"], rank.enhance_contrast(image, selem))
    assert_equal(refs["enhance_contrast_percentile"], rank.enhance_contrast_percentile(image, selem))
    assert_equal(refs["pop"], rank.pop(image, selem))
    assert_equal(refs["pop_percentile"], rank.pop_percentile(image, selem))
    assert_equal(refs["pop_bilateral"], rank.pop_bilateral(image, selem))
    assert_equal(refs["sum"], rank.sum(image, selem))
    assert_equal(refs["sum_bilateral"], rank.sum_bilateral(image, selem))
    assert_equal(refs["sum_percentile"], rank.sum_percentile(image, selem))
    assert_equal(refs["threshold"], rank.threshold(image, selem))
    assert_equal(refs["threshold_percentile"], rank.threshold_percentile(image, selem))
    assert_equal(refs["tophat"], rank.tophat(image, selem))
    assert_equal(refs["noise_filter"], rank.noise_filter(image, selem))
    assert_equal(refs["entropy"], rank.entropy(image, selem))
    assert_equal(refs["otsu"], rank.otsu(image, selem))
    assert_equal(refs["percentile"], rank.percentile(image, selem))
    assert_equal(refs["windowed_histogram"], rank.windowed_histogram(image, selem))