예제 #1
0
def find_lines(lines_mask: np.ndarray) -> list:
    """
    Finds the longest central line for each connected component in the given binary mask.

    :param lines_mask: Binary mask of the detected line-areas
    :return: a list of Opencv-style polygonal lines (each contour encoded as [N,1,2] elements where each tuple is (x,y) )
    """
    # Make sure one-pixel wide 8-connected mask
    lines_mask = skeletonize(lines_mask)

    class MakeLineMCP(MCP_Connect):
        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)
            self.connections = dict()
            self.scores = defaultdict(lambda: np.inf)

        def create_connection(self, id1, id2, pos1, pos2, cost1, cost2):
            k = (min(id1, id2), max(id1, id2))
            s = cost1 + cost2
            if self.scores[k] > s:
                self.connections[k] = (pos1, pos2, s)
                self.scores[k] = s

        def get_connections(self, subsample=5):
            results = dict()
            for k, (pos1, pos2, s) in self.connections.items():
                path = np.concatenate([self.traceback(pos1), self.traceback(pos2)[::-1]])
                results[k] = path[::subsample]
            return results

        def goal_reached(self, int_index, float_cumcost):
            if float_cumcost > 0:
                return 2
            else:
                return 0

    if np.sum(lines_mask) == 0:
        return []
    # Find extremities points
    end_points_candidates = np.stack(np.where((convolve2d(lines_mask, np.ones((3, 3)), mode='same') == 2) & lines_mask)).T
    connected_components = skimage_label(lines_mask, connectivity=2)
    # Group endpoint by connected components and keep only the two points furthest away
    d = defaultdict(list)
    for pt in end_points_candidates:
        d[connected_components[pt[0], pt[1]]].append(pt)
    end_points = []
    for pts in d.values():
        d = euclidean_distances(np.stack(pts), np.stack(pts))
        i, j = np.unravel_index(d.argmax(), d.shape)
        end_points.append(pts[i])
        end_points.append(pts[j])
    end_points = np.stack(end_points)

    mcp = MakeLineMCP(~lines_mask)
    mcp.find_costs(end_points)
    connections = mcp.get_connections()
    if not np.all(np.array(sorted([i for k in connections.keys() for i in k])) == np.arange(len(end_points))):
        print('Warning : find_lines seems weird')
    return [c[:, None, ::-1] for c in connections.values()]
예제 #2
0
파일: axis.py 프로젝트: fmonegaglia/pyris
 def BoundingBox(self, I, knot=None):
     '''
     Compute the Bounding Box of Non-Zero data
     '''
     if knot is not None:
         label = skimage_label(I, connectivity=2)
         I = (label == label[knot[0], knot[1]]).astype(int)
     rp = regionprops(I)
     [xl, yl, xr, yr] = [int(b) for b in rp[0].bbox]
     self.xl = xl - 1
     self.yl = yl - 1
     self.xr = xr + 1
     self.yr = yr + 1
     return [self.xl, self.xr, self.yl, self.yr]
예제 #3
0
def prediction_to_keypoints(predictions, min_blob_size=None, prediction_threshold=0.9):
    """Convert prediction to keypoints

    Threshold prediction
    Find connected components
    Merge neighboring components

    idea: split blob if several parts are > min_blob_size

    :return: keypoints, categories (both as np.arrays)
    """
    if min_blob_size is None:
        min_blob_size = 160 * config.scale ** 2

    # thresholding -> 0, 1
    predictions[:, :, 1:] = (predictions[:, :, 1:] >= prediction_threshold).astype(np.float64)
    prediction_argmax = np.argmax(predictions, axis=2)

    # find blobs in non-background prediction pixels (any keypoint category)
    blobs, num_blobs = skimage_label(prediction_argmax > 0, return_num=True, connectivity=2)
    points = []
    points_categories = []

    # create a keypoint from blob pixels
    blob_sizes = []

    for blob in range(1, num_blobs + 1):
        blob_indices = np.argwhere(blobs == blob)
        if len(blob_indices) < min_blob_size:
            continue

        cats, support = np.unique(prediction_argmax[blobs == blob], return_counts=True)
        blob_sizes.append(len(blob_indices))

        center = np.mean(blob_indices, axis=0).astype(np.int)
        winning_category = cats[np.argmax(support)]
        points.append(center)
        points_categories.append(winning_category)

    if len(points) > 0:
        points = np.flip(points, axis=1)  # yx -> xy
    else:
        # fix: empty list does not have dimensions like (n, 2)
        points = np.array((0, 2))

    points_categories = np.array(points_categories)
    # print('blob size:', np.mean(blob_sizes).astype(np.int))

    return points, points_categories  # , blob_sizes
예제 #4
0
def image2bb(img, thre = 128):
	''' _image2bb(img, thre)

	convert image hot map into bb text strings
	image: prediction image hotmap
	thre: threshold to binarize the hotmap
	Return: string, contains boundingbox coordinates'''
	lbimg = skimage_label(numpy.uint8(img > thre), background = 0)
	bbox = []
	for l in xrange(lbimg.max()+1):
		x, y = numpy.where(lbimg == l)
		x0 = min(x)
		y0 = min(y)
		x1 = max(x)
		y1 = max(y)
		bb = [x0, y0, x1, y1]
                bbox.append(bb)
	return bbox
예제 #5
0
    def apply(self, binary: np.array, *args,
              **kwargs) -> List[geometry.base.BaseGeometry]:
        # Make sure one-pixel wide 8-connected mask
        lines_mask = skeletonize(binary)

        class MakeLineMCP(MCP_Connect):
            def __init__(self, *args, **kwargs):
                super().__init__(*args, **kwargs)
                self.connections = dict()
                self.scores = defaultdict(lambda: np.inf)

            def create_connection(self, id1, id2, pos1, pos2, cost1, cost2):
                k = (min(id1, id2), max(id1, id2))
                s = cost1 + cost2
                if self.scores[k] > s:
                    self.connections[k] = (pos1, pos2, s)
                    self.scores[k] = s

            def get_connections(self, subsample=5):
                results = dict()
                for k, (pos1, pos2, s) in self.connections.items():
                    path = np.concatenate(
                        [self.traceback(pos1),
                         self.traceback(pos2)[::-1]])
                    results[k] = path[::subsample]
                return results

            def goal_reached(self, int_index, float_cumcost):
                if float_cumcost > 0:
                    return 2
                else:
                    return 0

        if np.sum(lines_mask) == 0:
            return []
        # Find extremities points
        end_points_candidates = np.stack(
            np.where((convolve2d(lines_mask, np.ones((3,
                                                      3)), mode="same") == 2)
                     & lines_mask)).T
        connected_components = skimage_label(lines_mask, connectivity=2)
        # Group endpoint by connected components and keep only the two points furthest away
        d = defaultdict(list)
        for pt in end_points_candidates:
            d[connected_components[pt[0], pt[1]]].append(pt)
        end_points = []
        for pts in d.values():
            d = euclidean_distances(np.stack(pts), np.stack(pts))
            i, j = np.unravel_index(d.argmax(), d.shape)
            end_points.append(pts[i])
            end_points.append(pts[j])
        end_points = np.stack(end_points)

        mcp = MakeLineMCP(~lines_mask)
        mcp.find_costs(end_points)
        connections = mcp.get_connections()
        if not np.all(
                np.array(sorted([i for k in connections.keys()
                                 for i in k])) == np.arange(len(end_points))):
            print("Warning : find_lines seems weird")

        return [
            geometry.LineString(c[:, ::-1]) for c in connections.values()
            if len(c) >= 2
        ]
예제 #6
0
def generateDrops(imagePath, cfg, inputLabel=None):
    """
	This function generate the drop with random position
	"""

    maxDrop = cfg["maxDrops"]
    minDrop = cfg["minDrops"]
    drop_num = randint(minDrop, maxDrop)
    maxR = cfg["maxR"]
    minR = cfg["minR"]
    ifReturnLabel = cfg["return_label"]
    edge_ratio = cfg["edge_darkratio"]

    PIL_bg_img = Image.open(imagePath)
    bg_img = np.asarray(PIL_bg_img)
    # to check if collision or not
    label_map = np.zeros_like(bg_img)[:, :, 0]
    imgh, imgw, _ = bg_img.shape

    # random drops position
    ran_pos = [(int(random.random() * imgw), int(random.random() * imgh))
               for _ in range(drop_num)]

    listRainDrops = []
    #########################
    # Create Raindrop
    #########################
    # create raindrop by default
    if inputLabel is None:
        for key, pos in enumerate(ran_pos):
            # label should start from 1
            key = key + 1
            radius = random.randint(minR, maxR)
            drop = raindrop.raindrop(key, pos, radius)
            listRainDrops.append(drop)
    #using input label
    else:
        arrayLabel = np.asarray(inputLabel)
        # get alpha
        condition = (arrayLabel[:, :, 0] > cfg["label_thres"])
        label = np.where(condition, 1, 0)

        label_part, label_nums = skimage_label(label,
                                               connectivity=2,
                                               return_num=True)
        for idx in range(label_nums):
            # 0 is bg
            i = idx + 1
            label_index = np.argwhere(label_part == i)
            U = np.min(label_index[:, 0])
            D = np.max(label_index[:, 0]) + 1
            L = np.min(label_index[:, 1])
            R = np.max(label_index[:, 1]) + 1
            cur_alpha = arrayLabel[U:D, L:R, 0].copy()
            #cur_alpha[(cur_alpha<=cfg["label_thres"])] = 0

            cur_label = (cur_alpha > cfg["label_thres"]) * 1

            # store left top
            centerxy = (L, U)
            drop = raindrop(idx,
                            centerxy=centerxy,
                            input_alpha=cur_alpha,
                            input_label=cur_label)
            listRainDrops.append(drop)

    #########################
    # Handle Collision
    #########################

    collisionNum = len(listRainDrops)
    listFinalDrops = list(listRainDrops)
    loop = 0

    # only check when using default raindrop
    if inputLabel is None:
        while collisionNum > 0:
            loop = loop + 1
            listFinalDrops = list(listFinalDrops)
            collisionNum = len(listFinalDrops)
            label_map = np.zeros_like(label_map)
            # Check Collision
            for drop in listFinalDrops:
                # check the bounding
                (ix, iy) = drop.getCenters()
                radius = drop.getRadius()
                ROI_WL = 2 * radius
                ROI_WR = 2 * radius
                ROI_HU = 3 * radius
                ROI_HD = 2 * radius
                if (iy - 3 * radius) < 0:
                    ROI_HU = iy
                if (iy + 2 * radius) > imgh:
                    ROI_HD = imgh - iy
                if (ix - 2 * radius) < 0:
                    ROI_WL = ix
                if (ix + 2 * radius) > imgw:
                    ROI_WR = imgw - ix

                # apply raindrop label map to Image's label map
                drop_label = drop.getLabelMap()

                # check if center has already has drops
                if (label_map[iy, ix] > 0):
                    col_ids = np.unique(label_map[iy - ROI_HU:iy + ROI_HD,
                                                  ix - ROI_WL:ix + ROI_WR])
                    col_ids = col_ids[col_ids != 0]
                    drop.setCollision(True, col_ids)
                    label_map[iy - ROI_HU:iy + ROI_HD,
                              ix - ROI_WL:ix + ROI_WR] = drop_label[
                                  3 * radius - ROI_HU:3 * radius + ROI_HD,
                                  2 * radius - ROI_WL:2 * radius +
                                  ROI_WR] * drop.getKey()
                else:
                    label_map[iy - ROI_HU:iy + ROI_HD,
                              ix - ROI_WL:ix + ROI_WR] = drop_label[
                                  3 * radius - ROI_HU:3 * radius + ROI_HD,
                                  2 * radius - ROI_WL:2 * radius +
                                  ROI_WR] * drop.getKey()
                    # no collision
                    collisionNum = collisionNum - 1

            if collisionNum > 0:
                listFinalDrops = CheckCollision(listFinalDrops)

    # add alpha for the edge of the drops
    alpha_map = np.zeros_like(label_map).astype(np.float64)

    if inputLabel is None:
        for drop in listFinalDrops:
            (ix, iy) = drop.getCenters()
            radius = drop.getRadius()
            ROI_WL = 2 * radius
            ROI_WR = 2 * radius
            ROI_HU = 3 * radius
            ROI_HD = 2 * radius
            if (iy - 3 * radius) < 0:
                ROI_HU = iy
            if (iy + 2 * radius) > imgh:
                ROI_HD = imgh - iy
            if (ix - 2 * radius) < 0:
                ROI_WL = ix
            if (ix + 2 * radius) > imgw:
                ROI_WR = imgw - ix

            drop_alpha = drop.getAlphaMap()

            alpha_map[iy - ROI_HU:iy + ROI_HD, ix - ROI_WL:ix +
                      ROI_WR] += drop_alpha[3 * radius - ROI_HU:3 * radius +
                                            ROI_HD, 2 * radius -
                                            ROI_WL:2 * radius + ROI_WR]

    else:
        for drop in listFinalDrops:
            (ix, iy) = drop.getCenters()
            drop_alpha = drop.getAlphaMap()

            h, w = drop_alpha.shape

            alpha_map[iy:iy + h, ix:ix + w] += drop_alpha[:h, :w]
        # alpha_map = arrayLabel[:,:,0].copy()
        '''
		alpha_map = pyblur.GaussianBlur(Image.fromarray(np.uint8(alpha_map)), 10)
		alpha_map = np.asarray(alpha_map).astype(np.float)
		
		alpha_map = alpha_map/np.max(alpha_map)*255.0
		'''
    alpha_map = alpha_map / np.max(alpha_map) * 255.0
    #cv2.imwrite("test.bmp", alpha_map)
    #sys.exit()
    # alpha_map[label<1] = 0

    PIL_bg_img = Image.open(imagePath)
    for drop in listFinalDrops:
        # check bounding
        if inputLabel is None:
            (ix, iy) = drop.getCenters()
            radius = drop.getRadius()
            ROIU = iy - 3 * radius
            ROID = iy + 2 * radius
            ROIL = ix - 2 * radius
            ROIR = ix + 2 * radius
            if (iy - 3 * radius) < 0:
                ROIU = 0
                ROID = 5 * radius
            if (iy + 2 * radius) > imgh:
                ROIU = imgh - 5 * radius
                ROID = imgh
            if (ix - 2 * radius) < 0:
                ROIL = 0
                ROIR = 4 * radius
            if (ix + 2 * radius) > imgw:
                ROIL = imgw - 4 * radius
                ROIR = imgw
        else:
            # left top
            (ix, iy) = drop.getCenters()
            h, w = drop.getLabelMap().shape
            ROIU = iy
            ROID = iy + h
            ROIL = ix
            ROIR = ix + w

        tmp_bg = bg_img[ROIU:ROID, ROIL:ROIR, :]
        drop.updateTexture(tmp_bg)
        tmp_alpha_map = alpha_map[ROIU:ROID, ROIL:ROIR]

        output = drop.getTexture()
        tmp_output = np.asarray(output).astype(np.float)[:, :, -1]
        tmp_alpha_map = tmp_alpha_map * (tmp_output / 255)
        tmp_alpha_map = Image.fromarray(tmp_alpha_map.astype('uint8'))
        tmp_alpha_map.save("test.bmp")

        edge = ImageEnhance.Brightness(output)
        edge = edge.enhance(edge_ratio)

        if inputLabel is None:
            PIL_bg_img.paste(edge, (ix - 2 * radius, iy - 3 * radius),
                             tmp_alpha_map)
            PIL_bg_img.paste(output, (ix - 2 * radius, iy - 3 * radius),
                             output)
        else:
            PIL_bg_img.paste(edge, (ix, iy), tmp_alpha_map)
            PIL_bg_img.paste(output, (ix, iy), output)

    if ifReturnLabel:
        output_label = np.array(alpha_map)
        output_label.flags.writeable = True
        output_label[output_label > 0] = 1
        output_label = Image.fromarray(output_label.astype('uint8'))
        return PIL_bg_img, output_label

    return PIL_bg_img