예제 #1
0
    def test_convert(self):
        result = quat.convert(array([0, 0, 0.1]), to='rotmat')
        correct = array([[0.98, -0.19899749, 0.], [0.19899749, 0.98, 0.],
                         [0., 0., 1.]])
        error = norm(result - correct)
        self.assertTrue(error < self.delta)

        result = quat.convert([[0, 0, 0.1], [0, 0.1, 0]], to='rotmat')
        correct = array(
            [[0.98, -0.19899749, 0., 0.19899749, 0.98, 0., 0., 0., 1.],
             [0.98, 0., 0.19899749, 0., 1., 0., -0.19899749, 0., 0.98]])
        error = norm(result - correct)
        self.assertTrue(error < self.delta)
    def test_convert(self):
        result = quat.convert(array([0, 0, 0.1]), to='rotmat')
        correct = array([[ 0.98      , -0.19899749,  0.        ],
                   [ 0.19899749,  0.98      ,  0.        ],
                   [ 0.        ,  0.        ,  1.        ]])
        error = norm(result - correct)
        self.assertTrue(error < self.delta)

        result = quat.convert([[0, 0, 0.1], [0, 0.1, 0]], to='rotmat')
        correct = array([[ 0.98      , -0.19899749,  0.        ,  0.19899749,  0.98      ,
                 0.        ,  0.        ,  0.        ,  1.        ],
               [ 0.98      ,  0.        ,  0.19899749,  0.        ,  1.        ,
                 0.        , -0.19899749,  0.        ,  0.98      ]])
        error = norm(result - correct)
        self.assertTrue(error < self.delta)
 def test_madgwick(self):
     
     from skinematics.sensors.manual import MyOwnSensor
     
     ## Get data
     imu = self.imu_signals
     in_data = {'rate' : imu['rate'],
         'acc' : imu['gia'],
         'omega' : imu['omega'],
         'mag' : imu['magnetic']}
     
     my_sensor = MyOwnSensor(in_file='Simulated sensor-data', in_data=in_data,
                             R_init = quat.convert(self.q_init, to='rotmat'),
                             pos_init = self.pos_init, 
                             q_type = 'madgwick')
     
     # and then check, if the quat_vector = [0, sin(45), 0]
     q_madgwick = my_sensor.quat
     
     result = quat.q_vector(q_madgwick[-1])
     correct = array([ 0.,  np.sin(np.deg2rad(45)),  0.])
     error = norm(result-correct)
     
     #self.assertAlmostEqual(error, 0)
     self.assertTrue(error < 1e-3)
예제 #4
0
    def test_mahony(self):

        from skinematics.sensors.manual import MyOwnSensor

        ## Get data
        imu = self.imu_signals
        in_data = {
            'rate': imu['rate'],
            'acc': imu['gia'],
            'omega': imu['omega'],
            'mag': imu['magnetic']
        }

        my_sensor = MyOwnSensor(in_file='Simulated sensor-data',
                                in_data=in_data,
                                R_init=quat.convert(self.q_init, to='rotmat'),
                                pos_init=self.pos_init,
                                q_type='mahony')

        # and then check, if the quat_vector = [0, sin(45), 0]
        q_mahony = my_sensor.quat

        result = quat.q_vector(q_mahony[-1])
        correct = array([0., np.sin(np.deg2rad(45)), 0.])
        error = norm(result - correct)

        #self.assertAlmostEqual(error, 0)
        self.assertTrue(error < 1e-3)
예제 #5
0
파일: getpos.py 프로젝트: Kojon74/PosFix
async def data_loop(bmx: BMX160, q, pos, vel, prev_time):
    # Read IMU data and place into matrices to be analyzed in batches
    accel, gyro, magn, samp_period, time, prev_time1 = get_imu_data(
        bmx, prev_time)

    samp_freq = 1 / (samp_period)

    # print(q[119])

    # Convert initial rotation quaternion into rotation matrix
    initial_rot = quat.convert(q[NUM_SAMPLES - 1],
                               to='rotmat')  # .export(to='rotmat')

    # print(q[NUM_SAMPLES - 1])

    # # Use analytical method to calculate position, orientation and velocity
    # (q1, pos1, vel1) = imu_calc.calc_orientation_position(omega = gyro,
    #                                     accMeasured = accel,
    #                                     rate = samp_freq,
    #                                     initialOrientation = initial_rot,
    #                                     initialPosition = pos[NUM_SAMPLES - 1],
    #                                     initialVelocity= vel[NUM_SAMPLES - 1],
    #                                     timeVector=time)

    # Use Kalmans method to calculate orientation, and position

    q1 = imu_calc.kalman(rate=samp_freq,
                         acc=accel,
                         omega=gyro,
                         mag=magn,
                         initialPosition=pos[NUM_SAMPLES - 1],
                         initialVelocity=vel[NUM_SAMPLES - 1],
                         timeVector=time)

    return q1, prev_time1
예제 #6
0
 def test_convert(self):
     result = rotmat.convert(quat.convert([0, 0, 0.1], to ='rotmat'), to ='quat')
     correct = np.array([[ 0.99498744,  0.        ,  0.        ,  0.1       ]])
     error = np.linalg.norm(result - correct)
     self.assertTrue(error < self.delta)
 def test_convert(self):
     result = rotmat.convert(quat.convert([0, 0, 0.1], to ='rotmat'), to ='quat')
     correct = np.array([[ 0.99498744,  0.        ,  0.        ,  0.1       ]])
     error = np.linalg.norm(result - correct)
     self.assertTrue(error < self.delta)
예제 #8
0
def analytical(R_initialOrientation, omega, initialPosition, accMeasured,
               rate):
    ''' Reconstruct position and orientation with an analytical solution,
    from angular velocity and linear acceleration.
    Assumes a start in a stationary position. No compensation for drift.

    Parameters
    ----------
    omega : ndarray(N,3)
        Angular velocity, in [rad/s]
    accMeasured : ndarray(N,3)
        Linear acceleration, in [m/s^2]
    initialPosition : ndarray(3,)
        initial Position, in [m]
    R_initialOrientation: ndarray(3,3)
        Rotation matrix describing the initial orientation of the sensor,
        except a mis-orienation with respect to gravity
    rate : float
        sampling rate, in [Hz]

    Returns
    -------
    q : ndarray(N,3)
        Orientation, expressed as a quaternion vector
    pos : ndarray(N,3)
        Position in space [m]

    Example
    -------
    >>> q1, pos1 = analytical(R_initialOrientation, omega, initialPosition, acc, rate)

    '''

    # Transform recordings to angVel/acceleration in space --------------

    # Orientation of \vec{g} with the sensor in the "R_initialOrientation"
    g = 9.81
    g0 = np.linalg.inv(R_initialOrientation).dot(np.r_[0, 0, g])

    # for the remaining deviation, assume the shortest rotation to there
    q0 = vector.q_shortest_rotation(accMeasured[0], g0)
    R0 = quat.convert(q0, 'rotmat')

    # combine the two, to form a reference orientation. Note that the sequence
    # is very important!
    R_ref = R_initialOrientation.dot(R0)
    q_ref = quat.rotmat2quat(R_ref)

    # Calculate orientation q by "integrating" omega -----------------
    q = quat.calc_quat(omega, q_ref, rate, 'bf')

    # Acceleration, velocity, and position ----------------------------
    # From q and the measured acceleration, get the \frac{d^2x}{dt^2}
    g_v = np.r_[0, 0, g]
    accReSensor = accMeasured - vector.rotate_vector(g_v, quat.q_inv(q))
    accReSpace = vector.rotate_vector(accReSensor, q)

    # Make the first position the reference position
    q = quat.q_mult(q, quat.q_inv(q[0]))

    # compensate for drift
    #drift = np.mean(accReSpace, 0)
    #accReSpace -= drift*0.7

    # Position and Velocity through integration, assuming 0-velocity at t=0
    vel = np.nan * np.ones_like(accReSpace)
    pos = np.nan * np.ones_like(accReSpace)

    for ii in range(accReSpace.shape[1]):
        vel[:, ii] = cumtrapz(accReSpace[:, ii], dx=1. / rate, initial=0)
        pos[:, ii] = cumtrapz(vel[:, ii],
                              dx=1. / rate,
                              initial=initialPosition[ii])

    return (q, pos)
예제 #9
0
# Scalar and vector part
q_scalar = quat.q_scalar(q_data)
q_vector = quat.q_vector(q_data)

print('\nScalar part:')
pprint(q_scalar)
print('Vector part:')
pprint(q_vector)

# Convert to axis angle
q_axisangle = quat.quat2deg(q_unit)
print('\nAxis angle:')
pprint(q_axisangle)

# Conversion to a rotation matrix
rotmats = quat.convert(q_unit)
print('\nFirst rotation matrix')
pprint(rotmats[0].reshape(3, 3))

# Working with Quaternion objects
# -------------------------------
data = np.array([[0, 0, 0.1], [0, 0.2, 0]])
data2 = np.array([[0, 0, 0.1], [0, 0, 0.1]])

eye = quat.Quaternion(data)
head = quat.Quaternion(data2)

# Quaternion multiplication, ...
gaze = head * eye

# ..., division, ...