def __init__(self, X, op_version=None, **kwargs): """ :param X: array or OnnxOperatorMixin :param op_version: opset version :param kwargs: additional parameter """ OnnxOperator.__init__(self, X, op_version=op_version, **kwargs)
def __init__(self, text, mark=0, mincharnum=1, pad_value='#', separators=None, tokenexp='[a-zA-Z0-9_]+', stopwords=None, op_version=None, **kwargs): """ :param text: array or OnnxOperatorMixin :param mark: see :epkg:`Tokenizer` :param pad_value: see :epkg:`Tokenizer` :param separators: see :epkg:`Tokenizer` :param tokenexp: see :epkg:`Tokenizer` :param stopwords: list of stopwords, addition to :epkg:`Tokenizer` :param op_version: opset version :param kwargs: additional parameter """ if separators is None: separators = [] if stopwords is None: stopwords = [] OnnxOperator.__init__(self, text, mark=mark, mincharnum=mincharnum, pad_value=pad_value, separators=separators, tokenexp=tokenexp, stopwords=stopwords, op_version=op_version, **kwargs)
def __init__(self, a_shape, b_shape, op_version=None, **kwargs): """ :param a_shape: The 1st input shape as Tensor. :param b_shape: The 2nds input shape as Tensor. :param op_version: opset version :param kwargs: additional parameter """ OnnxOperator.__init__(self, a_shape, b_shape, op_version=op_version, **kwargs)
def __init__(self, grad, prob, op_version=None, **kwargs): """ :param grad: gradient :param prob: probablities :param op_version: opset version :param kwargs: additional parameter """ OnnxOperator.__init__(self, grad, prob, op_version=op_version, **kwargs)
def __init__(self, *args, axis=-1, op_version=None, **kwargs): """ :param A: array or OnnxOperatorMixin :param fft_length: (optional) array or OnnxOperatorMixin (args) :param axis: axis :param op_version: opset version :param kwargs: additional parameter """ OnnxOperator.__init__(self, *args, axis=axis, op_version=op_version, **kwargs)
def __init__(self, X, Y, transA=0, transB=0, op_version=None, **kwargs): """ :param X: first matrix :param Y: second matrix :param transA: transpose first matrix :param transB: transpose second matrix :param op_version: opset version :param kwargs: additional parameter """ OnnxOperator.__init__(self, X, Y, transA=transA, transB=transB, op_version=op_version, **kwargs)
def __init__(self, X, non_differentiable_outputs=None, full_shape_outputs=None, op_version=None, **kwargs): """ :param X: array or OnnxOperatorMixin :param non_differentiable_outputs: the indices of the module outputs that doesn't have a gradient. :param full_shape_outputs: the indices of the module outputs that must have full shape. :param op_version: opset version :param kwargs: additional parameter """ OnnxOperator.__init__(self, X, op_version=op_version, **kwargs) self.non_differentiable_outputs = non_differentiable_outputs self.full_shape_outputs = full_shape_outputs
def test_constant(self): cst = OnnxOperator.ConstantVariable("a") self.assertEqual(cst.value, "a")
def test_unscoped(self): var2 = OnnxOperator.UnscopedVariable("a") var1 = OnnxOperator.UnscopedVariable("a") self.assertEqual(var1, var2) self.assertEqual(var1, "a") self.assertEqual(repr(var1), "UnscopedVariable('a')")