예제 #1
0
def build_ort_reducemean(axes, op_version=14):  # opset=13, 14, ...
    node = OnnxReduceMean('x',
                          axes=axes,
                          op_version=op_version,
                          output_names=['z'])
    onx = node.to_onnx(inputs=[('x', FloatTensorType())],
                       target_opset=op_version)
    sess = InferenceSession(onx.SerializeToString())
    return lambda x, y: sess.run(None, {'x': x})
    def test_onnxt_runtime_reduce_mean(self):
        X = numpy.array([[2, 1], [0, 1]], dtype=float)

        onx = OnnxReduceMean('X', output_names=['Y'], keepdims=0)
        model_def = onx.to_onnx({'X': X.astype(numpy.float32)})
        oinf = OnnxInference(model_def)
        got = oinf.run({'X': X})
        self.assertEqual(list(sorted(got)), ['Y'])
        self.assertEqualArray(numpy.mean(X), got['Y'], decimal=6)

        onx = OnnxReduceMean('X', output_names=['Y'], axes=1)
        model_def = onx.to_onnx({'X': X.astype(numpy.float32)})
        oinf = OnnxInference(model_def)
        got = oinf.run({'X': X})
        self.assertEqual(list(sorted(got)), ['Y'])
        self.assertEqualArray(numpy.mean(X, axis=1).ravel(), got['Y'].ravel())

        onx = OnnxReduceMean('X', output_names=['Y'], axes=1, keepdims=1)
        model_def = onx.to_onnx({'X': X.astype(numpy.float32)})
        oinf = OnnxInference(model_def)
        got = oinf.run({'X': X})
        self.assertEqual(list(sorted(got)), ['Y'])
        self.assertEqualArray(
            numpy.mean(X, axis=1, keepdims=1).ravel(), got['Y'].ravel())
예제 #3
0
def live_decorrelate_transformer_converter(scope, operator, container):
    # shortcuts
    op = operator.raw_operator
    opv = container.target_opset
    out = operator.outputs

    # We retrieve the unique input.
    X = operator.inputs[0]

    # We guess its type. If the operator ingests float (or double),
    # it outputs float (or double).
    proto_dtype = guess_proto_type(X.type)
    dtype = guess_numpy_type(X.type)

    # Lines in comment specify the numpy computation
    # the ONNX code implements.
    # mean_ = numpy.mean(X, axis=0, keepdims=True)
    mean = OnnxReduceMean(X, axes=[0], keepdims=1, op_version=opv)

    # This is trick I often use. The converter automatically
    # chooses a name for every output. In big graph,
    # it is difficult to know which operator is producing which output.
    # This line just tells every node must prefix its ouputs with this string.
    # It also applies to all inputs nodes unless this method
    # was called for one of these nodes.
    mean.set_onnx_name_prefix('mean')

    # X2 = X - mean_
    X2 = OnnxSub(X, mean, op_version=opv)

    # V = X2.T @ X2 / X2.shape[0]
    N = OnnxGatherElements(OnnxShape(X, op_version=opv),
                           numpy.array([0], dtype=numpy.int64),
                           op_version=opv)
    Nf = OnnxCast(N, to=proto_dtype, op_version=opv)

    # Every output involved in N and Nf is prefixed by 'N'.
    Nf.set_onnx_name_prefix('N')

    V = OnnxDiv(OnnxMatMul(OnnxTranspose(X2, op_version=opv),
                           X2,
                           op_version=opv),
                Nf,
                op_version=opv)
    V.set_onnx_name_prefix('V1')

    # V += numpy.identity(V.shape[0]) * self.alpha
    V = OnnxAdd(V,
                op.alpha * numpy.identity(op.nf_, dtype=dtype),
                op_version=opv)
    V.set_onnx_name_prefix('V2')

    # L, P = numpy.linalg.eig(V)
    LP = OnnxEig(V, eigv=True, op_version=opv)
    LP.set_onnx_name_prefix('LP')

    # Linv = L ** (-0.5)
    # Notation LP[0] means OnnxPow is taking the first output
    # of operator OnnxEig, LP[1] would mean the second one
    # LP is not allowed as it is ambiguous
    Linv = OnnxPow(LP[0], numpy.array([-0.5], dtype=dtype), op_version=opv)
    Linv.set_onnx_name_prefix('Linv')

    # diag = numpy.diag(Linv)
    diag = OnnxMul(OnnxEyeLike(numpy.zeros((op.nf_, op.nf_),
                                           dtype=numpy.int64),
                               k=0,
                               op_version=opv),
                   Linv,
                   op_version=opv)
    diag.set_onnx_name_prefix('diag')

    # root = P @ diag @ P.transpose()
    trv = OnnxTranspose(LP[1], op_version=opv)
    coef_left = OnnxMatMul(LP[1], diag, op_version=opv)
    coef_left.set_onnx_name_prefix('coef_left')
    coef = OnnxMatMul(coef_left, trv, op_version=opv)
    coef.set_onnx_name_prefix('coef')

    # Same part as before.
    Y = OnnxMatMul(X2, coef, op_version=opv, output_names=out[:1])
    Y.set_onnx_name_prefix('Y')

    # The last line specifies the final output.
    # Every node involved in the computation is added to the ONNX
    # graph at this stage.
    Y.add_to(scope, container)
예제 #4
0
def live_decorrelate_transformer_converter(scope, operator, container):
    op = operator.raw_operator
    opv = container.target_opset
    out = operator.outputs

    # We retrieve the unique input.
    X = operator.inputs[0]
    proto_dtype = guess_proto_type(X.type)

    dtype = guess_numpy_type(X.type)

    # new part

    # mean_ = numpy.mean(X, axis=0, keepdims=True)
    mean = OnnxReduceMean(X, axes=[0], keepdims=1, op_version=opv)
    mean.set_onnx_name_prefix('mean')

    # X2 = X - mean_
    X2 = OnnxSub(X, mean, op_version=opv)

    # V = X2.T @ X2 / X2.shape[0]
    N = OnnxGatherElements(OnnxShape(X, op_version=opv),
                           numpy.array([0], dtype=numpy.int64),
                           op_version=opv)
    Nf = OnnxCast(N, to=proto_dtype, op_version=opv)
    Nf.set_onnx_name_prefix('N')

    V = OnnxDiv(OnnxMatMul(OnnxTranspose(X2, op_version=opv),
                           X2,
                           op_version=opv),
                Nf,
                op_version=opv)
    V.set_onnx_name_prefix('V1')

    # V += numpy.identity(V.shape[0]) * self.alpha
    V = OnnxAdd(V,
                op.alpha * numpy.identity(op.nf_, dtype=dtype),
                op_version=opv)
    V.set_onnx_name_prefix('V2')

    # L, P = numpy.linalg.eig(V)
    LP = OnnxEig(V, eigv=True, op_version=opv)
    LP.set_onnx_name_prefix('LP')

    # Linv = L ** (-0.5)
    Linv = OnnxPow(LP[0], numpy.array([-0.5], dtype=dtype), op_version=opv)
    Linv.set_onnx_name_prefix('Linv')

    # diag = numpy.diag(Linv)
    diag = OnnxMul(OnnxEyeLike(numpy.array([op.nf_, op.nf_],
                                           dtype=numpy.int64),
                               k=0,
                               op_version=opv),
                   Linv,
                   op_version=opv)
    diag.set_onnx_name_prefix('diag')

    # root = P @ diag @ P.transpose()
    trv = OnnxTranspose(LP[1], op_version=opv)
    coef_left = OnnxMatMul(LP[1], diag, op_version=opv)
    coef_left.set_onnx_name_prefix('coef_left')
    coef = OnnxMatMul(coef_left, trv, op_version=opv)
    coef.set_onnx_name_prefix('coef')

    # Same part as before.
    Y = OnnxMatMul(X2, coef, op_version=opv, output_names=out[:1])
    Y.set_onnx_name_prefix('Y')
    Y.add_to(scope, container)