def test_onnx_example_algebra(self): initial = np.array([0, 0]).astype(np.float32).reshape((2,)) x = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32).reshape((3, 2)) opv = _TARGET_OPSET_ add_node = OnnxAdd( 'sum_in', 'next', output_names=['sum_out'], op_version=opv) id_node = OnnxIdentity( add_node, output_names=['scan_out'], op_version=opv) scan_body = id_node.to_onnx( {'sum_in': initial, 'next': initial}, outputs=[('sum_out', FloatTensorType()), ('scan_out', FloatTensorType())]) node = OnnxScan('initial', 'x', output_names=['y', 'z'], num_scan_inputs=1, body=scan_body.graph, op_version=opv) model_def = node.to_onnx( {'initial': initial, 'x': x}, outputs=[('y', FloatTensorType()), ('z', FloatTensorType())]) sess = InferenceSession(model_def.SerializeToString()) res = sess.run(None, {'initial': initial, 'x': x}) y = np.array([9, 12]).astype(np.float32).reshape((2,)) z = np.array([1, 2, 4, 6, 9, 12]).astype(np.float32).reshape((3, 2)) assert_almost_equal(y, res[0]) assert_almost_equal(z, res[1])
def test_onnx_example_pdist(self): x = np.array([1, 2, 4, 5, 5, 4]).astype(np.float32).reshape((3, 2)) opv = _TARGET_OPSET_ diff = OnnxSub('next_in', 'next', output_names=['diff'], op_version=opv) id_next = OnnxIdentity('next_in', output_names=['next_out'], op_version=opv) norm = OnnxReduceSumSquare(diff, output_names=['norm'], axes=[1], op_version=opv) flat = OnnxSqueezeApi11(norm, output_names=['scan_out'], axes=[1], op_version=opv) scan_body = id_next.to_onnx(OrderedDict([('next_in', x), ('next', FloatTensorType())]), outputs=[ ('next_out', FloatTensorType([3, 2])), ('scan_out', FloatTensorType([3])) ], other_outputs=[flat], target_opset=opv) sess = InferenceSession(scan_body.SerializeToString()) res = sess.run(None, {'next_in': x, 'next': x[:1]}) assert_almost_equal(x, res[0]) exp = np.array([0., 18., 20.], dtype=np.float32) assert_almost_equal(exp, res[1]) node = OnnxScan('x', 'x', output_names=['y', 'z'], num_scan_inputs=1, body=scan_body.graph, op_version=opv) model_def = node.to_onnx({'x': x}, outputs=[('y', FloatTensorType([3, 2])), ('z', FloatTensorType([3, 3]))]) try: onnx.checker.check_model(model_def) except ValidationError as e: if StrictVersion(onnx__version__) <= StrictVersion("1.5.0"): warnings.warn(e) else: raise e sess = InferenceSession(model_def.SerializeToString()) res = sess.run(None, {'x': x}) exp = squareform(pdist(x, metric="sqeuclidean")) assert_almost_equal(x, res[0]) assert_almost_equal(exp, res[1])
def squareform_pdist(X, **kwargs): opv = TARGET_OPSET diff = OnnxSub('next_in', 'next', output_names=['diff'], op_version=opv) id_next = OnnxIdentity('next_in', output_names=['next_out'], op_version=opv) norm = OnnxReduceSumSquare(diff, output_names=['norm'], axes=[1], op_version=opv) flat = OnnxSqueezeApi11(norm, output_names=['scan_out'], axes=[1], op_version=opv) scan_body = id_next.to_onnx( OrderedDict([('next_in', FloatTensorType()), ('next', FloatTensorType())]), outputs=[('next_out', FloatTensorType([None, None])), ('scan_out', FloatTensorType([None]))], other_outputs=[flat]) node = OnnxScan(X, X, output_names=['scan0_{idself}', 'scan1_{idself}'], num_scan_inputs=1, body=scan_body.graph, op_version=opv, **kwargs) return node[1]
def test_onnx_example_pdist(self): x = np.array([1, 2, 4, 5, 5, 4]).astype(np.float32).reshape((3, 2)) diff = OnnxSub('next_in', 'next', output_names=['diff']) id_next = OnnxIdentity('next_in', output_names=['next_out']) norm = OnnxReduceSumSquare(diff, output_names=['norm'], axes=[1]) flat = OnnxSqueeze(norm, output_names=['scan_out'], axes=[1]) scan_body = id_next.to_onnx(OrderedDict([('next_in', x), ('next', FloatTensorType())]), outputs=[ ('next_out', FloatTensorType([3, 2])), ('scan_out', FloatTensorType([3])) ], other_outputs=[flat]) sess = InferenceSession(scan_body.SerializeToString()) res = sess.run(None, {'next_in': x, 'next': x[:1]}) assert_almost_equal(x, res[0]) exp = np.array([0., 18., 20.], dtype=np.float32) assert_almost_equal(exp, res[1]) node = OnnxScan('x', 'x', output_names=['y', 'z'], num_scan_inputs=1, body=scan_body.graph) model_def = node.to_onnx({'x': x}, outputs=[('y', FloatTensorType([3, 2])), ('z', FloatTensorType([3, 3]))]) try: onnx.checker.check_model(model_def) except ValidationError as e: if sys.platform.startswith("win"): # schema information in onnx is incomplete on Windows warnings.warn(e) else: raise e sess = InferenceSession(model_def.SerializeToString()) res = sess.run(None, {'x': x}) exp = squareform(pdist(x, metric="sqeuclidean")) assert_almost_equal(x, res[0]) assert_almost_equal(exp, res[1])