예제 #1
0
def test_identical_points():
    # Ensure identical points are handled correctly when using mst with
    # a sparse connectivity matrix
    X = np.array([[0, 0, 0], [0, 0, 0], [1, 1, 1], [1, 1, 1], [2, 2, 2],
                  [2, 2, 2]])
    true_labels = np.array([0, 0, 1, 1, 2, 2])
    connectivity = kneighbors_graph(X, n_neighbors=3, include_self=False)
    connectivity = 0.5 * (connectivity + connectivity.T)
    connectivity, n_components = _fix_connectivity(X, connectivity,
                                                   'euclidean')

    for linkage in ('single', 'average', 'average', 'ward'):
        clustering = AgglomerativeClustering(n_clusters=3,
                                             linkage=linkage,
                                             connectivity=connectivity)
        clustering.fit(X)

        assert_almost_equal(
            normalized_mutual_info_score(clustering.labels_, true_labels), 1)
def test_identical_points():
    # Ensure identical points are handled correctly when using mst with
    # a sparse connectivity matrix
    X = np.array([[0, 0, 0], [0, 0, 0],
                  [1, 1, 1], [1, 1, 1],
                  [2, 2, 2], [2, 2, 2]])
    true_labels = np.array([0, 0, 1, 1, 2, 2])
    connectivity = kneighbors_graph(X, n_neighbors=3, include_self=False)
    connectivity = 0.5 * (connectivity + connectivity.T)
    connectivity, n_components = _fix_connectivity(X,
                                                   connectivity,
                                                   'euclidean')

    for linkage in ('single', 'average', 'average', 'ward'):
        clustering = AgglomerativeClustering(n_clusters=3,
                                             linkage=linkage,
                                             connectivity=connectivity)
        clustering.fit(X)

        assert_almost_equal(normalized_mutual_info_score(clustering.labels_,
                                                         true_labels), 1)