예제 #1
0
class BaseSLearner(object):
    """A parent class for S-learner classes.
    An S-learner estimates treatment effects with one machine learning model.
    Details of S-learner are available at Kunzel et al. (2018) (https://arxiv.org/abs/1706.03461).
    """
    def __init__(self, learner=None, ate_alpha=0.05, control_name=0):
        """Initialize an S-learner.
        Args:
            learner (optional): a model to estimate the treatment effect
            control_name (str or int, optional): name of control group
        """
        if learner:
            self.model = learner
        else:
            self.model = DummyRegressor()
        self.ate_alpha = ate_alpha
        self.control_name = control_name

    def __repr__(self):
        return '{}(model={})'.format(self.__class__.__name__,
                                     self.model.__repr__())

    def fit(self, X, treatment, y):
        """Fit the inference model
        Args:
            X (np.matrix): a feature matrix
            treatment (np.array): a treatment vector
            y (np.array): an outcome vector
        """
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()
        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models = {group: deepcopy(self.model) for group in self.t_groups}

        for group in self.t_groups:
            w = (treatment == group).astype(int)
            X_new = np.hstack((w.reshape((-1, 1)), X))
            self.models[group].fit(X_new, y)

    def predict(self, X, treatment, y=None, verbose=True):
        """Predict treatment effects.
        Args:
            X (np.matrix): a feature matrix
            treatment (np.array): a treatment vector
            y (np.array, optional): an outcome vector
        Returns:
            (numpy.ndarray): Predictions of treatment effects.
        """
        yhat_cs = {}
        yhat_ts = {}

        for group in self.t_groups:
            w = (treatment != group).astype(int)
            model = self.models[group]
            X_new = np.hstack((w.reshape((-1, 1)), X))

            X_new[:,
                  0] = 0  # set the treatment column to zero (the control group)
            yhat_cs[group] = model.predict(X_new)
            X_new[:,
                  0] = 1  # set the treatment column to one (the treatment group)
            yhat_ts[group] = model.predict(X_new)

        if y is not None and verbose:
            for group in self.t_groups:
                logger.info('Error metrics for {}'.format(group))
                logger.info('RMSE (Control): {:.6f}'.format(
                    np.sqrt(
                        mse(y[treatment != group],
                            yhat_cs[group][treatment != group]))))
                logger.info(' MAE (Control): {:.6f}'.format(
                    mae(y[treatment != group],
                        yhat_cs[group][treatment != group])))
                logger.info('RMSE (Treatment): {:.6f}'.format(
                    np.sqrt(
                        mse(y[treatment == group],
                            yhat_ts[group][treatment == group]))))
                logger.info(' MAE (Treatment): {:.6f}'.format(
                    mae(y[treatment == group],
                        yhat_ts[group][treatment == group])))

        te = np.zeros((X.shape[0], self.t_groups.shape[0]))
        for i, group in enumerate(self.t_groups):
            te[:, i] = yhat_ts[group] - yhat_cs[group]

        return te

    def fit_predict(self,
                    X,
                    treatment,
                    y,
                    return_ci=False,
                    n_bootstraps=1000,
                    bootstrap_size=10000,
                    verbose=True):
        """Fit the inference model of the S learner and predict treatment effects.
        Args:
            X (np.matrix): a feature matrix
            treatment (np.array): a treatment vector
            y (np.array): an outcome vector
            return_ci (bool, optional): whether to return confidence intervals
            n_bootstraps (int, optional): number of bootstrap iterations
            bootstrap_size (int, optional): number of samples per bootstrap
            verbose (str, optional): whether to output progress logs
        Returns:
            (numpy.ndarray): Predictions of treatment effects. Output dim: [n_samples, n_treatment].
                If return_ci, returns CATE [n_samples, n_treatment], LB [n_samples, n_treatment],
                UB [n_samples, n_treatment]
        """
        self.fit(X, treatment, y)
        te = self.predict(X, treatment, y)

        if not return_ci:
            return te
        else:
            start = pd.datetime.today()
            self.t_groups_global = self.t_groups
            self._classes_global = self._classes
            self.models_global = deepcopy(self.models)
            te_bootstraps = np.zeros(shape=(X.shape[0], self.t_groups.shape[0],
                                            n_bootstraps))
            for i in range(n_bootstraps):
                te_b = self.bootstrap(X, treatment, y, size=bootstrap_size)
                te_bootstraps[:, :, i] = te_b
                if verbose and i % 10 == 0 and i > 0:
                    now = pd.datetime.today()
                    lapsed = (now - start).seconds
                    logger.info(
                        '{}/{} bootstraps completed. ({}s lapsed)'.format(
                            i + 1, n_bootstraps, lapsed))

            te_lower = np.percentile(te_bootstraps, (self.ate_alpha / 2) * 100,
                                     axis=2)
            te_upper = np.percentile(te_bootstraps,
                                     (1 - self.ate_alpha / 2) * 100,
                                     axis=2)

            # set member variables back to global (currently last bootstrapped outcome)
            self.t_groups = self.t_groups_global
            self._classes = self._classes_global
            self.models = self.models_global

            return (te, te_lower, te_upper)

    def estimate_ate(self,
                     X,
                     treatment,
                     y,
                     return_ci=False,
                     n_bootstraps=1000,
                     bootstrap_size=10000,
                     verbose=True):
        if return_ci:
            te, te_lb, te_ub = self.fit_predict(X,
                                                treatment,
                                                y,
                                                return_ci=True,
                                                n_bootstraps=n_bootstraps,
                                                bootstrap_size=bootstrap_size,
                                                verbose=verbose)

            ate = te.mean(axis=0)
            ate_lb = te_lb.mean(axis=0)
            ate_ub = te_ub.mean(axis=0)
            return ate, ate_lb, ate_ub

        else:
            te = self.fit_predict(X,
                                  treatment,
                                  y,
                                  return_ci=False,
                                  n_bootstraps=n_bootstraps,
                                  bootstrap_size=bootstrap_size,
                                  verbose=verbose)
            ate = te.mean(axis=0)
            return ate

    def bootstrap(self, X, treatment, y, size=10000):
        """Runs a single bootstrap. Fits on bootstrapped sample, then predicts on whole population.
        """
        idxs = np.random.choice(np.arange(0, X.shape[0]), size=size)
        X_b = X[idxs]
        treatment_b = treatment[idxs]
        y_b = y[idxs]
        self.fit(X=X_b, treatment=treatment_b, y=y_b)
        te_b = self.predict(X=X, treatment=treatment, verbose=False)
        return te_b
예제 #2
0
파일: slearner.py 프로젝트: uber/causalml
class BaseSLearner(BaseLearner):
    """A parent class for S-learner classes.
    An S-learner estimates treatment effects with one machine learning model.
    Details of S-learner are available at Kunzel et al. (2018) (https://arxiv.org/abs/1706.03461).
    """
    def __init__(self, learner=None, ate_alpha=0.05, control_name=0):
        """Initialize an S-learner.
        Args:
            learner (optional): a model to estimate the treatment effect
            control_name (str or int, optional): name of control group
        """
        if learner is not None:
            self.model = learner
        else:
            self.model = DummyRegressor()
        self.ate_alpha = ate_alpha
        self.control_name = control_name

    def __repr__(self):
        return "{}(model={})".format(self.__class__.__name__,
                                     self.model.__repr__())

    def fit(self, X, treatment, y, p=None):
        """Fit the inference model
        Args:
            X (np.matrix, np.array, or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_treatment_vector(treatment, self.control_name)
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()
        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models = {group: deepcopy(self.model) for group in self.t_groups}

        for group in self.t_groups:
            mask = (treatment == group) | (treatment == self.control_name)
            treatment_filt = treatment[mask]
            X_filt = X[mask]
            y_filt = y[mask]

            w = (treatment_filt == group).astype(int)
            X_new = np.hstack((w.reshape((-1, 1)), X_filt))
            self.models[group].fit(X_new, y_filt)

    def predict(self,
                X,
                treatment=None,
                y=None,
                p=None,
                return_components=False,
                verbose=True):
        """Predict treatment effects.
        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series, optional): a treatment vector
            y (np.array or pd.Series, optional): an outcome vector
            return_components (bool, optional): whether to return outcome for treatment and control seperately
            verbose (bool, optional): whether to output progress logs
        Returns:
            (numpy.ndarray): Predictions of treatment effects.
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        yhat_cs = {}
        yhat_ts = {}

        for group in self.t_groups:
            model = self.models[group]

            # set the treatment column to zero (the control group)
            X_new = np.hstack((np.zeros((X.shape[0], 1)), X))
            yhat_cs[group] = model.predict(X_new)

            # set the treatment column to one (the treatment group)
            X_new[:, 0] = 1
            yhat_ts[group] = model.predict(X_new)

            if (y is not None) and (treatment is not None) and verbose:
                mask = (treatment == group) | (treatment == self.control_name)
                treatment_filt = treatment[mask]
                w = (treatment_filt == group).astype(int)
                y_filt = y[mask]

                yhat = np.zeros_like(y_filt, dtype=float)
                yhat[w == 0] = yhat_cs[group][mask][w == 0]
                yhat[w == 1] = yhat_ts[group][mask][w == 1]

                logger.info("Error metrics for group {}".format(group))
                regression_metrics(y_filt, yhat, w)

        te = np.zeros((X.shape[0], self.t_groups.shape[0]))
        for i, group in enumerate(self.t_groups):
            te[:, i] = yhat_ts[group] - yhat_cs[group]

        if not return_components:
            return te
        else:
            return te, yhat_cs, yhat_ts

    def fit_predict(
        self,
        X,
        treatment,
        y,
        p=None,
        return_ci=False,
        n_bootstraps=1000,
        bootstrap_size=10000,
        return_components=False,
        verbose=True,
    ):
        """Fit the inference model of the S learner and predict treatment effects.
        Args:
            X (np.matrix, np.array, or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            return_ci (bool, optional): whether to return confidence intervals
            n_bootstraps (int, optional): number of bootstrap iterations
            bootstrap_size (int, optional): number of samples per bootstrap
            return_components (bool, optional): whether to return outcome for treatment and control seperately
            verbose (bool, optional): whether to output progress logs
        Returns:
            (numpy.ndarray): Predictions of treatment effects. Output dim: [n_samples, n_treatment].
                If return_ci, returns CATE [n_samples, n_treatment], LB [n_samples, n_treatment],
                UB [n_samples, n_treatment]
        """
        self.fit(X, treatment, y)
        te = self.predict(X, treatment, y, return_components=return_components)

        if not return_ci:
            return te
        else:
            t_groups_global = self.t_groups
            _classes_global = self._classes
            models_global = deepcopy(self.models)
            te_bootstraps = np.zeros(shape=(X.shape[0], self.t_groups.shape[0],
                                            n_bootstraps))

            logger.info("Bootstrap Confidence Intervals")
            for i in tqdm(range(n_bootstraps)):
                te_b = self.bootstrap(X, treatment, y, size=bootstrap_size)
                te_bootstraps[:, :, i] = te_b

            te_lower = np.percentile(te_bootstraps, (self.ate_alpha / 2) * 100,
                                     axis=2)
            te_upper = np.percentile(te_bootstraps,
                                     (1 - self.ate_alpha / 2) * 100,
                                     axis=2)

            # set member variables back to global (currently last bootstrapped outcome)
            self.t_groups = t_groups_global
            self._classes = _classes_global
            self.models = deepcopy(models_global)

            return (te, te_lower, te_upper)

    def estimate_ate(
        self,
        X,
        treatment,
        y,
        p=None,
        return_ci=False,
        bootstrap_ci=False,
        n_bootstraps=1000,
        bootstrap_size=10000,
        pretrain=False,
    ):
        """Estimate the Average Treatment Effect (ATE).

        Args:
            X (np.matrix, np.array, or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            return_ci (bool, optional): whether to return confidence intervals
            bootstrap_ci (bool): whether to return confidence intervals
            n_bootstraps (int): number of bootstrap iterations
            bootstrap_size (int): number of samples per bootstrap
            pretrain (bool): whether a model has been fit, default False.
        Returns:
            The mean and confidence interval (LB, UB) of the ATE estimate.
        """

        X, treatment, y = convert_pd_to_np(X, treatment, y)
        if pretrain:
            te, yhat_cs, yhat_ts = self.predict(X,
                                                treatment,
                                                y,
                                                return_components=True)
        else:
            te, yhat_cs, yhat_ts = self.fit_predict(X,
                                                    treatment,
                                                    y,
                                                    return_components=True)

        ate = np.zeros(self.t_groups.shape[0])
        ate_lb = np.zeros(self.t_groups.shape[0])
        ate_ub = np.zeros(self.t_groups.shape[0])

        for i, group in enumerate(self.t_groups):
            _ate = te[:, i].mean()

            mask = (treatment == group) | (treatment == self.control_name)
            treatment_filt = treatment[mask]
            y_filt = y[mask]
            w = (treatment_filt == group).astype(int)
            prob_treatment = float(sum(w)) / w.shape[0]

            yhat_c = yhat_cs[group][mask]
            yhat_t = yhat_ts[group][mask]

            se = np.sqrt(
                ((y_filt[w == 0] - yhat_c[w == 0]).var() /
                 (1 - prob_treatment) +
                 (y_filt[w == 1] - yhat_t[w == 1]).var() / prob_treatment +
                 (yhat_t - yhat_c).var()) / y_filt.shape[0])

            _ate_lb = _ate - se * norm.ppf(1 - self.ate_alpha / 2)
            _ate_ub = _ate + se * norm.ppf(1 - self.ate_alpha / 2)

            ate[i] = _ate
            ate_lb[i] = _ate_lb
            ate_ub[i] = _ate_ub

        if not return_ci:
            return ate
        elif return_ci and not bootstrap_ci:
            return ate, ate_lb, ate_ub
        else:
            t_groups_global = self.t_groups
            _classes_global = self._classes
            models_global = deepcopy(self.models)

            logger.info("Bootstrap Confidence Intervals for ATE")
            ate_bootstraps = np.zeros(shape=(self.t_groups.shape[0],
                                             n_bootstraps))

            for n in tqdm(range(n_bootstraps)):
                ate_b = self.bootstrap(X, treatment, y, size=bootstrap_size)
                ate_bootstraps[:, n] = ate_b.mean()

            ate_lower = np.percentile(ate_bootstraps,
                                      (self.ate_alpha / 2) * 100,
                                      axis=1)
            ate_upper = np.percentile(ate_bootstraps,
                                      (1 - self.ate_alpha / 2) * 100,
                                      axis=1)

            # set member variables back to global (currently last bootstrapped outcome)
            self.t_groups = t_groups_global
            self._classes = _classes_global
            self.models = deepcopy(models_global)

            return ate, ate_lower, ate_upper
예제 #3
0
class BaseSLearner(object):
    """A parent class for S-learner classes.
    An S-learner estimates treatment effects with one machine learning model.
    Details of S-learner are available at Kunzel et al. (2018) (https://arxiv.org/abs/1706.03461).
    """
    def __init__(self, learner=None, ate_alpha=0.05, control_name=0):
        """Initialize an S-learner.
        Args:
            learner (optional): a model to estimate the treatment effect
            control_name (str or int, optional): name of control group
        """
        if learner is not None:
            self.model = learner
        else:
            self.model = DummyRegressor()
        self.ate_alpha = ate_alpha
        self.control_name = control_name

    def __repr__(self):
        return '{}(model={})'.format(self.__class__.__name__,
                                     self.model.__repr__())

    def fit(self, X, treatment, y):
        """Fit the inference model
        Args:
            X (np.matrix, np.array, or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_treatment_vector(treatment, self.control_name)
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()
        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models = {group: deepcopy(self.model) for group in self.t_groups}

        for group in self.t_groups:
            mask = (treatment == group) | (treatment == self.control_name)
            treatment_filt = treatment[mask]
            X_filt = X[mask]
            y_filt = y[mask]

            w = (treatment_filt == group).astype(int)
            X_new = np.hstack((w.reshape((-1, 1)), X_filt))
            self.models[group].fit(X_new, y_filt)

    def predict(self,
                X,
                treatment=None,
                y=None,
                return_components=False,
                verbose=True):
        """Predict treatment effects.
        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series, optional): a treatment vector
            y (np.array or pd.Series, optional): an outcome vector
            return_components (bool, optional): whether to return outcome for treatment and control seperately
            verbose (bool, optional): whether to output progress logs
        Returns:
            (numpy.ndarray): Predictions of treatment effects.
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        yhat_cs = {}
        yhat_ts = {}

        for group in self.t_groups:
            model = self.models[group]

            # set the treatment column to zero (the control group)
            X_new = np.hstack((np.zeros((X.shape[0], 1)), X))
            yhat_cs[group] = model.predict(X_new)

            # set the treatment column to one (the treatment group)
            X_new[:, 0] = 1
            yhat_ts[group] = model.predict(X_new)

            if (y is not None) and (treatment is not None) and verbose:
                mask = (treatment == group) | (treatment == self.control_name)
                treatment_filt = treatment[mask]
                w = (treatment_filt == group).astype(int)
                y_filt = y[mask]

                yhat = np.zeros_like(y_filt, dtype=float)
                yhat[w == 0] = yhat_cs[group][mask][w == 0]
                yhat[w == 1] = yhat_ts[group][mask][w == 1]

                logger.info('Error metrics for group {}'.format(group))
                regression_metrics(y_filt, yhat, w)

        te = np.zeros((X.shape[0], self.t_groups.shape[0]))
        for i, group in enumerate(self.t_groups):
            te[:, i] = yhat_ts[group] - yhat_cs[group]

        if not return_components:
            return te
        else:
            return te, yhat_cs, yhat_ts

        return te

    def fit_predict(self,
                    X,
                    treatment,
                    y,
                    return_ci=False,
                    n_bootstraps=1000,
                    bootstrap_size=10000,
                    return_components=False,
                    verbose=True):
        """Fit the inference model of the S learner and predict treatment effects.
        Args:
            X (np.matrix, np.array, or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            return_ci (bool, optional): whether to return confidence intervals
            n_bootstraps (int, optional): number of bootstrap iterations
            bootstrap_size (int, optional): number of samples per bootstrap
            return_components (bool, optional): whether to return outcome for treatment and control seperately
            verbose (bool, optional): whether to output progress logs
        Returns:
            (numpy.ndarray): Predictions of treatment effects. Output dim: [n_samples, n_treatment].
                If return_ci, returns CATE [n_samples, n_treatment], LB [n_samples, n_treatment],
                UB [n_samples, n_treatment]
        """
        self.fit(X, treatment, y)
        te = self.predict(X, treatment, y, return_components=return_components)

        if not return_ci:
            return te
        else:
            t_groups_global = self.t_groups
            _classes_global = self._classes
            models_global = deepcopy(self.models)
            te_bootstraps = np.zeros(shape=(X.shape[0], self.t_groups.shape[0],
                                            n_bootstraps))

            logger.info('Bootstrap Confidence Intervals')
            for i in tqdm(range(n_bootstraps)):
                te_b = self.bootstrap(X, treatment, y, size=bootstrap_size)
                te_bootstraps[:, :, i] = te_b

            te_lower = np.percentile(te_bootstraps, (self.ate_alpha / 2) * 100,
                                     axis=2)
            te_upper = np.percentile(te_bootstraps,
                                     (1 - self.ate_alpha / 2) * 100,
                                     axis=2)

            # set member variables back to global (currently last bootstrapped outcome)
            self.t_groups = t_groups_global
            self._classes = _classes_global
            self.models = deepcopy(models_global)

            return (te, te_lower, te_upper)

    def estimate_ate(self,
                     X,
                     treatment,
                     y,
                     return_ci=False,
                     bootstrap_ci=False,
                     n_bootstraps=1000,
                     bootstrap_size=10000):
        """Estimate the Average Treatment Effect (ATE).

        Args:
            X (np.matrix, np.array, or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            return_ci (bool, optional): whether to return confidence intervals
            bootstrap_ci (bool): whether to return confidence intervals
            n_bootstraps (int): number of bootstrap iterations
            bootstrap_size (int): number of samples per bootstrap
        Returns:
            The mean and confidence interval (LB, UB) of the ATE estimate.
        """
        te, yhat_cs, yhat_ts = self.fit_predict(X,
                                                treatment,
                                                y,
                                                return_components=True)

        ate = np.zeros(self.t_groups.shape[0])
        ate_lb = np.zeros(self.t_groups.shape[0])
        ate_ub = np.zeros(self.t_groups.shape[0])

        for i, group in enumerate(self.t_groups):
            _ate = te[:, i].mean()

            mask = (treatment == group) | (treatment == self.control_name)
            treatment_filt = treatment[mask]
            y_filt = y[mask]
            w = (treatment_filt == group).astype(int)
            prob_treatment = float(sum(w)) / w.shape[0]

            yhat_c = yhat_cs[group][mask]
            yhat_t = yhat_ts[group][mask]

            se = np.sqrt(
                ((y_filt[w == 0] - yhat_c[w == 0]).var() /
                 (1 - prob_treatment) +
                 (y_filt[w == 1] - yhat_t[w == 1]).var() / prob_treatment +
                 (yhat_t - yhat_c).var()) / y_filt.shape[0])

            _ate_lb = _ate - se * norm.ppf(1 - self.ate_alpha / 2)
            _ate_ub = _ate + se * norm.ppf(1 - self.ate_alpha / 2)

            ate[i] = _ate
            ate_lb[i] = _ate_lb
            ate_ub[i] = _ate_ub

        if not return_ci:
            return ate
        elif return_ci and not bootstrap_ci:
            return ate, ate_lb, ate_ub
        else:
            t_groups_global = self.t_groups
            _classes_global = self._classes
            models_global = deepcopy(self.models)

            logger.info('Bootstrap Confidence Intervals for ATE')
            ate_bootstraps = np.zeros(shape=(self.t_groups.shape[0],
                                             n_bootstraps))

            for n in tqdm(range(n_bootstraps)):
                ate_b = self.bootstrap(X, treatment, y, size=bootstrap_size)
                ate_bootstraps[:, n] = ate_b.mean()

            ate_lower = np.percentile(ate_bootstraps,
                                      (self.ate_alpha / 2) * 100,
                                      axis=1)
            ate_upper = np.percentile(ate_bootstraps,
                                      (1 - self.ate_alpha / 2) * 100,
                                      axis=1)

            # set member variables back to global (currently last bootstrapped outcome)
            self.t_groups = t_groups_global
            self._classes = _classes_global
            self.models = deepcopy(models_global)

            return ate, ate_lower, ate_upper

    def bootstrap(self, X, treatment, y, size=10000):
        """Runs a single bootstrap. Fits on bootstrapped sample, then predicts on whole population.
        """
        idxs = np.random.choice(np.arange(0, X.shape[0]), size=size)
        X_b = X[idxs]
        treatment_b = treatment[idxs]
        y_b = y[idxs]
        self.fit(X=X_b, treatment=treatment_b, y=y_b)
        te_b = self.predict(X=X, treatment=treatment, verbose=False)
        return te_b

    def get_importance(self,
                       X=None,
                       tau=None,
                       model_tau_feature=None,
                       features=None,
                       method='auto',
                       normalize=True,
                       test_size=0.3,
                       random_state=None):
        """
        Builds a model (using X to predict estimated/actual tau), and then calculates feature importances
        based on a specified method.

        Currently supported methods are:
            - auto (calculates importance based on estimator's default implementation of feature importance;
                    estimator must be tree-based)
                    Note: if none provided, it uses lightgbm's LGBMRegressor as estimator, and "gain" as
                    importance type
            - permutation (calculates importance based on mean decrease in accuracy when a feature column is permuted; estimator can be any form)
        Hint: for permutation, downsample data for better performance especially if X.shape[1] is large

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            tau (np.array): a treatment effect vector (estimated/actual)
            model_tau_feature (sklearn/lightgbm/xgboost model object): an unfitted model object
            features (np.array): list/array of feature names. If None, an enumerated list will be used
            method (str): auto, permutation
            normalize (bool): normalize by sum of importances if method=auto (defaults to True)
            test_size (float/int): if float, represents the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples (used for estimating permutation importance)
            random_state (int/RandomState instance/None): random state used in permutation importance estimation
        """
        explainer = Explainer(method=method,
                              control_name=self.control_name,
                              X=X,
                              tau=tau,
                              model_tau=model_tau_feature,
                              features=features,
                              classes=self._classes,
                              normalize=normalize,
                              test_size=test_size,
                              random_state=random_state)
        return explainer.get_importance()

    def get_shap_values(self,
                        X=None,
                        model_tau_feature=None,
                        tau=None,
                        features=None):
        """
        Builds a model (using X to predict estimated/actual tau), and then calculates shapley values.
        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            tau (np.array): a treatment effect vector (estimated/actual)
            model_tau_feature (sklearn/lightgbm/xgboost model object): an unfitted model object
            features (optional, np.array): list/array of feature names. If None, an enumerated list will be used.
        """
        explainer = Explainer(method='shapley',
                              control_name=self.control_name,
                              X=X,
                              tau=tau,
                              model_tau=model_tau_feature,
                              features=features,
                              classes=self._classes)
        return explainer.get_shap_values()

    def plot_importance(self,
                        X=None,
                        tau=None,
                        model_tau_feature=None,
                        features=None,
                        method='auto',
                        normalize=True,
                        test_size=0.3,
                        random_state=None):
        """
        Builds a model (using X to predict estimated/actual tau), and then plots feature importances
        based on a specified method.

        Currently supported methods are:
            - auto (calculates importance based on estimator's default implementation of feature importance;
                    estimator must be tree-based)
                    Note: if none provided, it uses lightgbm's LGBMRegressor as estimator, and "gain" as
                    importance type
            - permutation (calculates importance based on mean decrease in accuracy when a feature column is permuted; estimator can be any form)
        Hint: for permutation, downsample data for better performance especially if X.shape[1] is large

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            tau (np.array): a treatment effect vector (estimated/actual)
            model_tau_feature (sklearn/lightgbm/xgboost model object): an unfitted model object
            features (optional, np.array): list/array of feature names. If None, an enumerated list will be used
            method (str): auto, permutation
            normalize (bool): normalize by sum of importances if method=auto (defaults to True)
            test_size (float/int): if float, represents the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples (used for estimating permutation importance)
            random_state (int/RandomState instance/None): random state used in permutation importance estimation
        """
        explainer = Explainer(method=method,
                              control_name=self.control_name,
                              X=X,
                              tau=tau,
                              model_tau=model_tau_feature,
                              features=features,
                              classes=self._classes,
                              normalize=normalize,
                              test_size=test_size,
                              random_state=random_state)
        explainer.plot_importance()

    def plot_shap_values(self,
                         X=None,
                         tau=None,
                         model_tau_feature=None,
                         features=None,
                         shap_dict=None,
                         **kwargs):
        """
        Plots distribution of shapley values.

        If shapley values have been pre-computed, pass it through the shap_dict parameter.
        If shap_dict is not provided, this builds a new model (using X to predict estimated/actual tau),
        and then calculates shapley values.

        Args:
            X (np.matrix, np.array, or pd.Dataframe): a feature matrix. Required if shap_dict is None.
            tau (np.array): a treatment effect vector (estimated/actual)
            model_tau_feature (sklearn/lightgbm/xgboost model object): an unfitted model object
            features (optional, np.array): list/array of feature names. If None, an enumerated list will be used.
            shap_dict (optional, dict): a dict of shapley value matrices. If None, shap_dict will be computed.
        """
        override_checks = False if shap_dict is None else True
        explainer = Explainer(method='shapley',
                              control_name=self.control_name,
                              X=X,
                              tau=tau,
                              model_tau=model_tau_feature,
                              features=features,
                              override_checks=override_checks,
                              classes=self._classes)
        explainer.plot_shap_values(shap_dict=shap_dict)

    def plot_shap_dependence(self,
                             treatment_group,
                             feature_idx,
                             X,
                             tau,
                             model_tau_feature=None,
                             features=None,
                             shap_dict=None,
                             interaction_idx='auto',
                             **kwargs):
        """
        Plots dependency of shapley values for a specified feature, colored by an interaction feature.

        If shapley values have been pre-computed, pass it through the shap_dict parameter.
        If shap_dict is not provided, this builds a new model (using X to predict estimated/actual tau),
        and then calculates shapley values.

        This plots the value of the feature on the x-axis and the SHAP value of the same feature
        on the y-axis. This shows how the model depends on the given feature, and is like a
        richer extension of the classical partial dependence plots. Vertical dispersion of the
        data points represents interaction effects.

        Args:
            treatment_group (str or int): name of treatment group to create dependency plot on
            feature_idx (str or int): feature index / name to create dependency plot on
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            tau (np.array): a treatment effect vector (estimated/actual)
            model_tau_feature (sklearn/lightgbm/xgboost model object): an unfitted model object
            features (optional, np.array): list/array of feature names. If None, an enumerated list will be used.
            shap_dict (optional, dict): a dict of shapley value matrices. If None, shap_dict will be computed.
            interaction_idx (optional, str or int): feature index / name used in coloring scheme as interaction feature.
                If "auto" then shap.common.approximate_interactions is used to pick what seems to be the
                strongest interaction (note that to find to true strongest interaction you need to compute
                the SHAP interaction values).
        """
        override_checks = False if shap_dict is None else True
        explainer = Explainer(method='shapley',
                              control_name=self.control_name,
                              X=X,
                              tau=tau,
                              model_tau=model_tau_feature,
                              features=features,
                              override_checks=override_checks,
                              classes=self._classes)
        explainer.plot_shap_dependence(treatment_group=treatment_group,
                                       feature_idx=feature_idx,
                                       shap_dict=shap_dict,
                                       interaction_idx=interaction_idx,
                                       **kwargs)
예제 #4
0
파일: slearner.py 프로젝트: Minyus/causalml
class BaseSLearner(object):
    """A parent class for S-learner classes.

    An S-learner estimates treatment effects with one machine learning model.

    Details of S-learner are available at Kunzel et al. (2018) (https://arxiv.org/abs/1706.03461).
    """
    def __init__(self, learner=None, ate_alpha=0.05, control_name=0):
        """Initialize an S-learner.

        Args:
            learner (optional): a model to estimate the treatment effect
            control_name (str or int, optional): name of control group
        """
        if learner:
            self.model = learner
        else:
            self.model = DummyRegressor()
        self.ate_alpha = ate_alpha
        self.control_name = control_name

    def __repr__(self):
        return '{}(model={})'.format(self.__class__.__name__,
                                     self.model.__repr__())

    def fit(self, X, treatment, y):
        """Fit the inference model

        Args:
            X (np.matrix): a feature matrix
            treatment (np.array): a treatment vector
            y (np.array): an outcome vector
        """
        is_treatment = treatment != self.control_name
        w = is_treatment.astype(int)

        t_groups = np.unique(treatment[is_treatment])
        self._classes = {}

        # this should be updated for multi-treatment case
        self._classes[t_groups[0]] = 0
        X = np.hstack((w.reshape((-1, 1)), X))
        self.model.fit(X, y)

    def predict(self, X, treatment, y=None):
        """Predict treatment effects.

        Args:
            X (np.matrix): a feature matrix
            treatment (np.array): a treatment vector
            y (np.array, optional): an outcome vector

        Returns:
            (numpy.ndarray): Predictions of treatment effects.
        """
        is_treatment = treatment != self.control_name
        w = is_treatment.astype(int)

        X = np.hstack((w.reshape((-1, 1)), X))

        X[:, 0] = 0  # set the treatment column to zero (the control group)
        yhat_c = self.model.predict(X)

        X[:, 0] = 1  # set the treatment column to one (the treatment group)
        yhat_t = self.model.predict(X)

        if y is not None:
            logger.info('RMSE (Control): {:.6f}'.format(
                np.sqrt(mse(y[~is_treatment], yhat_c[~is_treatment]))))
            logger.info(' MAE (Control): {:.6f}'.format(
                mae(y[~is_treatment], yhat_c[~is_treatment])))
            logger.info('RMSE (Treatment): {:.6f}'.format(
                np.sqrt(mse(y[is_treatment], yhat_t[is_treatment]))))
            logger.info(' MAE (Treatment): {:.6f}'.format(
                mae(y[is_treatment], yhat_t[is_treatment])))

        return (yhat_t - yhat_c).reshape(-1, 1)

    def fit_predict(self,
                    X,
                    treatment,
                    y,
                    return_ci=False,
                    n_bootstraps=1000,
                    bootstrap_size=10000,
                    verbose=False):
        """Fit the inference model of the S learner and predict treatment effects.

        Args:
            X (np.matrix): a feature matrix
            treatment (np.array): a treatment vector
            y (np.array): an outcome vector
            return_ci (bool, optional): whether to return confidence intervals
            n_bootstraps (int, optional): number of bootstrap iterations
            bootstrap_size (int, optional): number of samples per bootstrap
            verbose (str, optional): whether to output progress logs

        Returns:
            (numpy.ndarray): Predictions of treatment effects. Output dim: [n_samples, n_treatment].
                If return_ci, returns CATE [n_samples, n_treatment], LB [n_samples, n_treatment],
                UB [n_samples, n_treatment]
        """
        self.fit(X, treatment, y)
        te = self.predict(X, treatment, y)

        if not return_ci:
            return te
        else:
            start = pd.datetime.today()
            te_bootstraps = np.zeros(shape=(X.shape[0], n_bootstraps))
            for i in range(n_bootstraps):
                te_b = self.bootstrap(X, treatment, y, size=bootstrap_size)
                te_bootstraps[:, i] = np.ravel(te_b)
                if verbose:
                    now = pd.datetime.today()
                    lapsed = (now - start).seconds / 60
                    logger.info(
                        '{}/{} bootstraps completed. ({:.01f} min lapsed)'.
                        format(i + 1, n_bootstraps, lapsed))

            te_lower = np.percentile(te_bootstraps, (self.ate_alpha / 2) * 100,
                                     axis=1)
            te_upper = np.percentile(te_bootstraps,
                                     (1 - self.ate_alpha / 2) * 100,
                                     axis=1)

            return (te, te_lower, te_upper)

    def estimate_ate(self, X, treatment, y):
        te, te_lb, te_ub = self.fit_predict(X, treatment, y, return_ci=True)
        return te.mean(), te_lb.mean(), te_ub.mean()

    def bootstrap(self, X, treatment, y, size=10000):
        """Runs a single bootstrap. Fits on bootstrapped sample, then predicts on whole population."""

        idxs = np.random.choice(np.arange(0, X.shape[0]), size=size)
        X_b = X[idxs]
        treatment_b = treatment[idxs]
        y_b = y[idxs]
        self.fit(X=X_b, treatment=treatment_b, y=y_b)
        te_b = self.predict(X=X, treatment=treatment, y=y)
        return te_b