output_vector_items=output_features) classification_tf = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', max_depth=2, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1, oob_score=False, random_state=0, verbose=0, warm_start=False) classification_tf.mlinit(input_features="features", prediction_column='species', feature_names="features") rf_pipeline = Pipeline([(feature_extractor_tf.name, feature_extractor_tf), (classification_tf.name, classification_tf)]) rf_pipeline.mlinit() rf_pipeline.fit(data[input_features], data['species']) rf_pipeline.serialize_to_bundle('./', 'mleap-scikit-rf-pipeline', init=True)
output_vector=output_vector_name, output_vector_items=output_features) classification_tf = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', max_depth=2, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1, oob_score=False, random_state=0, verbose=0, warm_start=False) classification_tf.mlinit(input_features=feature_extractor_tf.output_vector, prediction_column='Survived', feature_names="features") rf_pipeline = Pipeline([(feature_extractor_tf.name, feature_extractor_tf), (classification_tf.name, classification_tf)]) rf_pipeline.mlinit() rf_pipeline.fit(train[input_features], train['Survived']) rf_pipeline.serialize_to_bundle('./models', 'random_forest', init=True)