def get_results_mice_imputation_includingy(X_incomplete, y): # Impute incomplete data using the IterativeImputer as a MICEImputer # Now using the output variable in the imputation loop m = 5 multiple_imputations = [] for i in range(m): Xy = np.column_stack((X_incomplete, y)) imputer = ChainedImputer(n_burn_in=99, n_imputations=1, random_state=i) imputer.fit(Xy) data_imputed = imputer.transform(Xy) # We save only the X imputed data because we do not want to use y to # predict y later on. X_imputed = data_imputed[:, :-1] multiple_imputations.append(X_imputed) # Perform linear regression on mice multiple imputed data # Estimate beta estimates and their variances m_coefs = [] m_vars = [] for i in range(m): estimator = LinearRegression() estimator.fit(multiple_imputations[i], y) y_predict = estimator.predict(multiple_imputations[i]) m_coefs.append(estimator.coef_) m_vars.append( calculate_variance_of_beta_estimates(y, y_predict, multiple_imputations[i])) # Calculate the end estimates by applying Rubin's rules. Qbar = calculate_Qbar(m_coefs) T = calculate_T(m_coefs, m_vars, Qbar) mice_errorbar = 1.96 * np.sqrt(T) return Qbar, T, mice_errorbar
def get_results_mice_imputation(X_incomplete, y): # Impute incomplete data using the IterativeImputer to perform multiple # imputation. We set n_burn_in at 99 and use only last imputation and # loop this procedure m times. m = 5 multiple_imputations = [] for i in range(m): imputer = ChainedImputer(n_burn_in=99, n_imputations=1, random_state=i) imputer.fit(X_incomplete) X_imputed = imputer.transform(X_incomplete) multiple_imputations.append(X_imputed) # Perform a model on each of the m imputed datasets # Estimate the estimates for each model/dataset m_coefs = [] m_vars = [] for i in range(m): estimator = LinearRegression() estimator.fit(multiple_imputations[i], y) y_predict = estimator.predict(multiple_imputations[i]) m_coefs.append(estimator.coef_) m_vars.append( calculate_variance_of_beta_estimates(y, y_predict, multiple_imputations[i])) # Calculate the end estimates by applying Rubin's rules. Qbar = calculate_Qbar(m_coefs) T = calculate_T(m_coefs, m_vars, Qbar) mice_errorbar = 1.96 * np.sqrt(T) return Qbar, T, mice_errorbar
def test_chained_imputer_transform_stochasticity(): rng = np.random.RandomState(0) n = 100 d = 10 X = sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray() imputer = ChainedImputer(missing_values=0, n_imputations=1, n_burn_in=1, random_state=rng) imputer.fit(X) X_fitted_1 = imputer.transform(X) X_fitted_2 = imputer.transform(X) # sufficient to assert that the means are not the same assert np.mean(X_fitted_1) != pytest.approx(np.mean(X_fitted_2))
def test_chained_imputer_no_missing(): rng = np.random.RandomState(0) X = rng.rand(100, 100) X[:, 0] = np.nan m1 = ChainedImputer(n_imputations=10, random_state=rng) m2 = ChainedImputer(n_imputations=10, random_state=rng) pred1 = m1.fit(X).transform(X) pred2 = m2.fit_transform(X) # should exclude the first column entirely assert_allclose(X[:, 1:], pred1) # fit and fit_transform should both be identical assert_allclose(pred1, pred2)
def get_results_chained_imputation(X_incomplete, y): # Impute incomplete data with IterativeImputer using single imputation # We set n_burn_in at 99 and use only the last imputation imputer = ChainedImputer(n_burn_in=99, n_imputations=1) imputer.fit(X_incomplete) X_imputed = imputer.transform(X_incomplete) # Perform linear regression on chained single imputed data # Estimate beta estimates and their variances estimator = LinearRegression() estimator.fit(X_imputed, y) y_predict = estimator.predict(X_imputed) # Save the beta estimates, the variance of these estimates and 1.96 * # standard error of the estimates chained_coefs = estimator.coef_ chained_vars = calculate_variance_of_beta_estimates( y, y_predict, X_imputed) chained_errorbar = 1.96 * np.sqrt(chained_vars) return chained_coefs, chained_vars, chained_errorbar