def test_enet_toy_list_input(): # Test ElasticNet for various values of alpha and l1_ratio with list X X = np.array([[-1], [0], [1]]) X = sp.csc_matrix(X) Y = [-1, 0, 1] # just a straight line T = np.array([[2], [3], [4]]) # test sample # this should be the same as unregularized least squares clf = ElasticNet(alpha=0, l1_ratio=1.0) # catch warning about alpha=0. # this is discouraged but should work. ignore_warnings(clf.fit)(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0)
def _test_sparse_enet_not_as_toy_dataset(alpha, fit_intercept, positive): n_samples, n_features, max_iter = 100, 100, 1000 n_informative = 10 X, y = make_sparse_data(n_samples, n_features, n_informative, positive=positive) X_train, X_test = X[n_samples / 2:], X[:n_samples / 2] y_train, y_test = y[n_samples / 2:], y[:n_samples / 2] s_clf = ElasticNet(alpha=alpha, l1_ratio=0.8, fit_intercept=fit_intercept, max_iter=max_iter, tol=1e-7, positive=positive, warm_start=True) s_clf.fit(X_train, y_train) assert_almost_equal(s_clf.dual_gap_, 0, 4) assert_greater(s_clf.score(X_test, y_test), 0.85) # check the convergence is the same as the dense version d_clf = ElasticNet(alpha=alpha, l1_ratio=0.8, fit_intercept=fit_intercept, max_iter=max_iter, tol=1e-7, positive=positive, warm_start=True) d_clf.fit(X_train.todense(), y_train) assert_almost_equal(d_clf.dual_gap_, 0, 4) assert_greater(d_clf.score(X_test, y_test), 0.85) assert_almost_equal(s_clf.coef_, d_clf.coef_, 5) assert_almost_equal(s_clf.intercept_, d_clf.intercept_, 5) # check that the coefs are sparse assert_less(np.sum(s_clf.coef_ != 0.0), 2 * n_informative)
def test_enet_positive_constraint(): X = [[-1], [0], [1]] y = [1, 0, -1] # just a straight line with negative slope enet = ElasticNet(alpha=0.1, max_iter=1000, positive=True) enet.fit(X, y) assert min(enet.coef_) >= 0
def test_sparse_enet_not_as_toy_dataset(): n_samples, n_features, max_iter = 100, 100, 1000 n_informative = 10 X, y = make_sparse_data(n_samples, n_features, n_informative) X_train, X_test = X[n_samples / 2:], X[:n_samples / 2] y_train, y_test = y[n_samples / 2:], y[:n_samples / 2] s_clf = SparseENet(alpha=0.1, rho=0.8, fit_intercept=False, max_iter=max_iter, tol=1e-7) s_clf.fit(X_train, y_train) assert_almost_equal(s_clf.dual_gap_, 0, 4) assert s_clf.score(X_test, y_test) > 0.85 # check the convergence is the same as the dense version d_clf = DenseENet(alpha=0.1, rho=0.8, fit_intercept=False, max_iter=max_iter, tol=1e-7) d_clf.fit(X_train, y_train) assert_almost_equal(d_clf.dual_gap_, 0, 4) assert d_clf.score(X_test, y_test) > 0.85 assert_almost_equal(s_clf.coef_, d_clf.coef_, 5) # check that the coefs are sparse assert np.sum(s_clf.coef_ != 0.0) < 2 * n_informative
def test_enet_copy_X_True(check_input): X, y, _, _ = build_dataset() X = X.copy(order='F') original_X = X.copy() enet = ElasticNet(copy_X=True) enet.fit(X, y, check_input=check_input) assert_array_equal(original_X, X)
def test_enet_copy_X_False_check_input_False(): X, y, _, _ = build_dataset() X = X.copy(order='F') original_X = X.copy() enet = ElasticNet(copy_X=False) enet.fit(X, y, check_input=False) # No copying, X is overwritten assert np.any(np.not_equal(original_X, X))
def test_normalize_option(): """ Check that the normalize option in enet works """ X = sp.csc_matrix([[-1], [0], [1]]) y = [-1, 0, 1] clf_dense = ElasticNet(fit_intercept=True, normalize=True) clf_sparse = ElasticNet(fit_intercept=True, normalize=True) clf_dense.fit(X, y) X = sp.csc_matrix(X) clf_sparse.fit(X, y) assert_almost_equal(clf_dense.dual_gap_, 0) assert_array_almost_equal(clf_dense.coef_, clf_sparse.coef_)
def test_warm_start(): X, y, _, _ = build_dataset() with warnings.catch_warnings(): warnings.simplefilter("ignore", UserWarning) clf = ElasticNet(alpha=0.1, max_iter=5, warm_start=True) clf.fit(X, y) clf.fit(X, y) # do a second round with 5 iterations clf2 = ElasticNet(alpha=0.1, max_iter=10) clf2.fit(X, y) assert_array_almost_equal(clf2.coef_, clf.coef_)
def test_enet_multitarget(): n_targets = 3 X, y, _, _ = build_dataset(n_samples=10, n_features=8, n_informative_features=10, n_targets=n_targets) estimator = ElasticNet(alpha=0.01, fit_intercept=True) estimator.fit(X, y) coef, intercept, dual_gap = (estimator.coef_, estimator.intercept_, estimator.dual_gap_) for k in range(n_targets): estimator.fit(X, y[:, k]) assert_array_almost_equal(coef[k, :], estimator.coef_) assert_array_almost_equal(intercept[k], estimator.intercept_) assert_array_almost_equal(dual_gap[k], estimator.dual_gap_)
def test_enet_toy(): """ Test ElasticNet for various parameters of alpha and l1_ratio. Actually, the parameters alpha = 0 should not be allowed. However, we test it as a border case. ElasticNet is tested with and without precomputed Gram matrix """ X = np.array([[-1.], [0.], [1.]]) Y = [-1, 0, 1] # just a straight line T = [[2.], [3.], [4.]] # test sample # this should be the same as lasso clf = ElasticNet(alpha=1e-8, l1_ratio=1.0) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=100, precompute=False) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=True) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=np.dot(X.T, X)) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0)
def test_enet_multitarget(): n_targets = 3 X, y = make_sparse_data(n_targets=n_targets) estimator = ElasticNet(alpha=0.01, fit_intercept=True, precompute=None) # XXX: There is a bug when precompute is not None! estimator.fit(X, y) coef, intercept, dual_gap = (estimator.coef_, estimator.intercept_, estimator.dual_gap_) for k in range(n_targets): estimator.fit(X, y[:, k]) assert_array_almost_equal(coef[k, :], estimator.coef_) assert_array_almost_equal(intercept[k], estimator.intercept_) assert_array_almost_equal(dual_gap[k], estimator.dual_gap_)
def test_fit_simple_backupsklearn(): df = pd.read_csv("./open_data/simple.txt", delim_whitespace=True) X = np.array(df.iloc[:, :df.shape[1] - 1], dtype='float32', order='C') y = np.array(df.iloc[:, df.shape[1] - 1], dtype='float32', order='C') Solver = h2o4gpu.ElasticNet enet = Solver(glm_stop_early=False) print("h2o4gpu fit()") enet.fit(X, y) print("h2o4gpu predict()") print(enet.predict(X)) print("h2o4gpu score()") print(enet.score(X,y)) enet_wrapper = Solver(positive=True, random_state=1234) print("h2o4gpu scikit wrapper fit()") enet_wrapper.fit(X, y) print("h2o4gpu scikit wrapper predict()") print(enet_wrapper.predict(X)) print("h2o4gpu scikit wrapper score()") print(enet_wrapper.score(X, y)) from sklearn.linear_model.coordinate_descent import ElasticNet enet_sk = ElasticNet(positive=True, random_state=1234) print("Scikit fit()") enet_sk.fit(X, y) print("Scikit predict()") print(enet_sk.predict(X)) print("Scikit score()") print(enet_sk.score(X, y)) enet_sk_coef = csr_matrix(enet_sk.coef_, dtype=np.float32).toarray() print(enet_sk.coef_) print(enet_sk_coef) print(enet_wrapper.coef_) print(enet_sk.intercept_) print(enet_wrapper.intercept_) print(enet_sk.n_iter_) print(enet_wrapper.n_iter_) print("Coeffs, intercept, and n_iters should match") assert np.allclose(enet_wrapper.coef_, enet_sk_coef) assert np.allclose(enet_wrapper.intercept_, enet_sk.intercept_)
def fit(self,X,y): ''' Fits ElasticNet Regression with kernelised features Parameters ---------- X: array-like of size [n_samples, n_features] Matrix of explanatory variables y: array-like of size (n_samples,) Vector of dependent variable Returns ------- obj: self self ''' X,y = check_X_y(X,y, dtype = np.float64) K = get_kernel(X, X, self.gamma, self.degree, self.coef0, self.kernel, self.kernel_params ) model = ElasticNet(self.alpha, self.l1_ratio, self.fit_intercept, self.normalize, self.precompute, self.max_iter, self.copy_X, self.tol, self.warm_start, self.positive, self.random_state, self.selection) self._model = model.fit(K,y) self.relevant_indices_ = np.where(self._model.coef_ != 0)[0] self.relevant_vectors_ = X[self.relevant_indices_,:] return self
def test_check_input_false(): X, y, _, _ = build_dataset(n_samples=20, n_features=10) X = check_array(X, order='F', dtype='float64') y = check_array(X, order='F', dtype='float64') clf = ElasticNet(selection='cyclic', tol=1e-8) # Check that no error is raised if data is provided in the right format clf.fit(X, y, check_input=False) # With check_input=False, an exhaustive check is not made on y but its # dtype is still cast in _preprocess_data to X's dtype. So the test should # pass anyway X = check_array(X, order='F', dtype='float32') clf.fit(X, y, check_input=False) # With no input checking, providing X in C order should result in false # computation X = check_array(X, order='C', dtype='float64') assert_raises(ValueError, clf.fit, X, y, check_input=False)
def test_check_input_false(): X, y, _, _ = build_dataset(n_samples=20, n_features=10) X = check_array(X, order='F', dtype='float64') y = check_array(X, order='F', dtype='float64') clf = ElasticNet(selection='cyclic', tol=1e-8) # Check that no error is raised if data is provided in the right format clf.fit(X, y, check_input=False) X = check_array(X, order='F', dtype='float32') clf.fit(X, y, check_input=True) # Check that an error is raised if data is provided in the wrong dtype, # because of check bypassing assert_raises(ValueError, clf.fit, X, y, check_input=False) # With no input checking, providing X in C order should result in false # computation X = check_array(X, order='C', dtype='float64') assert_raises(ValueError, clf.fit, X, y, check_input=False)
def test_enet_small(): """Toy tests with generated X and Y""" # TODO: add \theta prior knowledge here and test the output X = np.array([[-1.], [0.], [1.]]) Y = [-1, 0, 1] # a straight line T = [[2.], [3.], [4.]] # test sample # this should be the same as lasso clf = ElasticNet(alpha=1e-8, l1_ratio=1.0) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=100, precompute=False) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=True) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=np.dot(X.T, X)) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0)
def _test_sparse_enet_not_as_toy_dataset(alpha, fit_intercept, positive): n_samples, n_features, max_iter = 100, 100, 1000 n_informative = 10 X, y = make_sparse_data(n_samples, n_features, n_informative, positive=positive) X_train, X_test = X[n_samples / 2:], X[:n_samples / 2] y_train, y_test = y[n_samples / 2:], y[:n_samples / 2] s_clf = SparseENet(alpha=alpha, rho=0.8, fit_intercept=fit_intercept, max_iter=max_iter, tol=1e-7, positive=positive, warm_start=True) s_clf.fit(X_train, y_train) assert_almost_equal(s_clf.dual_gap_, 0, 4) assert_greater(s_clf.score(X_test, y_test), 0.85) # check the convergence is the same as the dense version d_clf = DenseENet(alpha=alpha, rho=0.8, fit_intercept=fit_intercept, max_iter=max_iter, tol=1e-7, positive=positive, warm_start=True) d_clf.fit(X_train, y_train) assert_almost_equal(d_clf.dual_gap_, 0, 4) assert_greater(d_clf.score(X_test, y_test), 0.85) assert_almost_equal(s_clf.coef_, d_clf.coef_, 5) assert_almost_equal(s_clf.intercept_, d_clf.intercept_, 5) # check that the coefs are sparse assert_less(np.sum(s_clf.coef_ != 0.0), 2 * n_informative) # check that warm restart leads to the same result with # sparse and dense versions rng = np.random.RandomState(seed=0) coef_init = rng.randn(n_features) d_clf.fit(X_train, y_train, coef_init=coef_init) s_clf.fit(X_train, y_train, coef_init=coef_init) assert_almost_equal(s_clf.coef_, d_clf.coef_, 5) assert_almost_equal(s_clf.intercept_, d_clf.intercept_, 5)
def test_warm_start_convergence(): X, y, _, _ = build_dataset() model = ElasticNet(alpha=1e-3, tol=1e-3).fit(X, y) n_iter_reference = model.n_iter_ # This dataset is not trivial enough for the model to converge in one pass. assert_greater(n_iter_reference, 2) # Check that n_iter_ is invariant to multiple calls to fit # when warm_start=False, all else being equal. model.fit(X, y) n_iter_cold_start = model.n_iter_ assert_equal(n_iter_cold_start, n_iter_reference) # Fit the same model again, using a warm start: the optimizer just performs # a single pass before checking that it has already converged model.set_params(warm_start=True) model.fit(X, y) n_iter_warm_start = model.n_iter_ assert_equal(n_iter_warm_start, 1)
def test_enet_toy_list_input(): """Test ElasticNet for various parameters of alpha and rho with list X""" X = np.array([[-1], [0], [1]]) X = sp.csc_matrix(X) Y = [-1, 0, 1] # just a straight line T = np.array([[2], [3], [4]]) # test sample # this should be the same as unregularized least squares clf = ElasticNet(alpha=0, rho=1.0) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, rho=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, rho=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0)
def test_enet_toy_explicit_sparse_input(): """Test ElasticNet for various values of alpha and l1_ratio with sparse X""" f = ignore_warnings # training samples X = sp.lil_matrix((3, 1)) X[0, 0] = -1 # X[1, 0] = 0 X[2, 0] = 1 Y = [-1, 0, 1] # just a straight line (the identity function) # test samples T = sp.lil_matrix((3, 1)) T[0, 0] = 2 T[1, 0] = 3 T[2, 0] = 4 # this should be the same as lasso clf = ElasticNet(alpha=0, l1_ratio=1.0) f(clf.fit)(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0)
def test_warm_start(): X, y, _, _ = build_dataset() clf = ElasticNet(alpha=1.0, max_iter=50, warm_start=True) clf.fit(X, y) clf.set_params(alpha=0.1) clf.fit(X, y) clf2 = ElasticNet(alpha=0.1, max_iter=500) clf2.fit(X, y) assert_array_almost_equal(clf2.coef_, clf.coef_)
def test_warm_start(): X, y, _, _ = build_dataset() # Test that explicit warm restart... clf = ElasticNet(alpha=1.0, max_iter=50) clf.fit(X, y) clf2 = ElasticNet(alpha=0.1, max_iter=50) clf2.fit(X, y, coef_init=clf.coef_.copy()) # ... and implicit warm restart are equivalent. clf3 = ElasticNet(alpha=1.0, max_iter=50, warm_start=True) clf3.fit(X, y) assert_array_almost_equal(clf3.coef_, clf.coef_) clf3.set_params(alpha=0.1) clf3.fit(X, y) assert_array_almost_equal(clf3.coef_, clf2.coef_)
def test_enet_toy_explicit_sparse_input(): """Test ElasticNet for various values of alpha and l1_ratio with sparse X""" # training samples X = sp.lil_matrix((3, 1)) X[0, 0] = -1 # X[1, 0] = 0 X[2, 0] = 1 Y = [-1, 0, 1] # just a straight line (the identity function) # test samples T = sp.lil_matrix((3, 1)) T[0, 0] = 2 T[1, 0] = 3 T[2, 0] = 4 # this should be the same as lasso clf = ElasticNet(alpha=0, l1_ratio=1.0) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0)
def test_random_descent(): # Test that both random and cyclic selection give the same results. # Ensure that the test models fully converge and check a wide # range of conditions. # This uses the coordinate descent algo using the gram trick. X, y, _, _ = build_dataset(n_samples=50, n_features=20) clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X, y) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X, y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # This uses the descent algo without the gram trick clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X.T, y[:20]) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X.T, y[:20]) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Sparse Case clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(sparse.csr_matrix(X), y) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(sparse.csr_matrix(X), y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Multioutput case. new_y = np.hstack((y[:, np.newaxis], y[:, np.newaxis])) clf_cyclic = MultiTaskElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X, new_y) clf_random = MultiTaskElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X, new_y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Raise error when selection is not in cyclic or random. clf_random = ElasticNet(selection='invalid') assert_raises(ValueError, clf_random.fit, X, y)