def test_dropin_LassoCV(sparse_X): """Test that our LassoCV behaves like sklearn's LassoCV.""" X, y, _, _ = build_dataset(n_samples=30, n_features=50, sparse_X=sparse_X) params = dict(eps=1e-1, n_alphas=100, tol=1e-10, cv=2) clf = LassoCV(**params) clf.fit(X, y) clf2 = sklearn_LassoCV(**params) clf2.fit(X, y) np.testing.assert_allclose(clf.mse_path_, clf2.mse_path_, rtol=1e-04) np.testing.assert_allclose(clf.alpha_, clf2.alpha_, rtol=1e-05) np.testing.assert_allclose(clf.coef_, clf2.coef_, rtol=1e-05) check_estimator(LassoCV)
def test_LassoCV(sparse_X, fit_intercept, positive): """Test that our LassoCV behaves like sklearn's LassoCV.""" X, y = build_dataset(n_samples=20, n_features=30, sparse_X=sparse_X) params = dict(eps=0.05, n_alphas=10, tol=1e-10, cv=2, fit_intercept=fit_intercept, positive=positive, verbose=2, n_jobs=-1) clf = LassoCV(**params) clf.fit(X, y) clf2 = sklearn_LassoCV(**params, max_iter=10000) clf2.fit(X, y) np.testing.assert_allclose(clf.mse_path_, clf2.mse_path_, atol=1e-4) np.testing.assert_allclose(clf.alpha_, clf2.alpha_) np.testing.assert_allclose(clf.coef_, clf2.coef_, atol=1e-5)