예제 #1
0
#########################

x1, x2 = shuffle(x1, x2)


model = BayesianGaussianMixture(n_components=2,
                                covariance_type="full",
                                max_iter=1,
                                init_params="random",
                                weight_concentration_prior_type="dirichlet_process",
                                verbose=0, verbose_interval=10)
data = np.asarray([x1, x2]).T

num_of_iters = 100
#for i in range(num_of_iters):
params = {}
for i in range(num_of_iters):
    if i != 0:
        model.set_params(params)
    model.fit(data)
    params = model.get_params()

#print(model.get_params())

plot_results(data, model.predict(data), model.means_, model.covariances_, 0, 'GMM')

"""
plt.figure()
plt.plot(x1, x2, '.')
plt.show()
"""
예제 #2
0
import numpy as np
import sys
import os
import math
from sklearn.mixture import BayesianGaussianMixture

# The Q-tensor naturally comes with a norm of 1
# scale_factor declares how much "distance" is created through rotation
scale_factor = 10.0

data = np.loadtxt("QTensor.txt")
data[:][3:8] *= scale_factor


#Use an Infinite Gaussian Mixture Model on the data to determine the location of clusters

dpgmm = BayesianGaussianMixture(n_components=500,weight_concentration_prior_type = 'dirichlet_process',verbose=1,n_init=10,max_iter=1000).fit(data)


#Determine the most likely labels of each data point
labels = dpgmm.predict(data)
print dpgmm.get_params()
np.savetxt("labels.txt",labels)
예제 #3
0
def main():
    """
    Get data from db and save it as csv
    """

    bq = BQHandler()
    io = IO(gs_bucket=options.gs_bucket)
    viz = Viz(io)

    starttime, endtime = io.get_dates(options)
    logging.info('Using dataset {} and time range {} - {}'.format(
        options.feature_dataset, starttime.strftime('%Y-%m-%d'),
        endtime.strftime('%Y-%m-%d')))

    all_param_names = options.label_params + options.feature_params + options.meta_params
    aggs = io.get_aggs_from_param_names(options.feature_params)

    if options.model == 'bgm':
        model = BayesianGaussianMixture(
            weight_concentration_prior_type="dirichlet_process",
            n_components=options.n_components)
    elif options.model == 'gaussiannb':
        model = GaussianNB()
    elif options.model == 'rfc':
        model = RandomForestClassifier(n_jobs=-1)
    elif options.model == 'svc':
        params = {'kernel': 'rbf', 'gamma': 0.5, 'C': 1, 'probability': True}
        model = SVC(**params)
    else:
        raise (
            'Model not specificied or wrong. Add for example "model: bgm" to config file.'
        )

    if options.pca:
        ipca = IncrementalPCA(n_components=options.pca_components,
                              whiten=options.whiten,
                              copy=False)

    sum_columns = ['delay']
    if options.reason_code_table is not None:
        sum_columns = ['count']

    logging.info('Reading data...')
    data = bq.get_rows(starttime,
                       endtime,
                       loc_col='trainstation',
                       project=options.project,
                       dataset=options.feature_dataset,
                       table=options.feature_table,
                       parameters=all_param_names,
                       reason_code_table=options.reason_code_table,
                       only_winters=options.only_winters)

    data = io.filter_train_type(labels_df=data,
                                train_types=options.train_types,
                                sum_types=True,
                                train_type_column='train_type',
                                location_column='trainstation',
                                time_column='time',
                                sum_columns=sum_columns,
                                aggs=aggs)

    # Sorting is actually not necessary. It's been useful for debugging.
    data.sort_values(by=['time', 'trainstation'], inplace=True)
    data.set_index('time', inplace=True)

    logging.info('Data contain {} rows...'.format(len(data)))

    logging.info('Adding binary class to the dataset with limit {}...'.format(
        options.delay_limit))
    #logging.info('Adding binary class to the dataset with limit {}...'.format(limit))
    #data['class'] = data['count'].map(lambda x: 1 if x > options.delay_count_limit else -1)
    data['class'] = data['delay'].map(lambda x: 1
                                      if x > options.delay_limit else -1)
    io.log_class_dist(data.loc[:, 'class'].values, labels=[-1, 1])

    if options.balance:
        logging.info('Balancing dataset...')
        count = data.groupby('class').size().min()
        data = pd.concat([
            data.loc[data['class'] == -1].sample(n=count),
            data.loc[data['class'] == 1].sample(n=count)
        ])
        io.log_class_dist(data.loc[:, 'class'].values, labels=[-1, 1])

    if options.month:
        logging.info('Adding month to the dataset...')
        data['month'] = data.index.map(lambda x: x.month)
        options.feature_params.append('month')

    target = data.loc[:, 'class'].astype(np.int32).values.ravel()
    features = data.loc[:, options.feature_params].astype(np.float32).values

    X_train, X_test, y_train, y_test = train_test_split(features,
                                                        target,
                                                        test_size=0.3)

    if options.normalize:
        logging.info('Normalizing data...')
        scaler = StandardScaler()
        X_train = scaler.fit_transform(X_train)
        X_test = scaler.transform(X_test)

    logging.debug('Features shape after pre-processing: {}'.format(
        X_train.shape))

    if options.cv:
        logging.info('Doing random search for hyper parameters...')
        if options.model == 'bgm':
            param_grid = {
                "n_components": [1, 2, 4, 8, 16],
                "covariance_type": ['full', 'tied', 'diag', 'spherical'],
                "init_params": ['kmeans', 'random']
            }
        elif options.model == 'rfc':
            raise ("Not implemented. Get back to work!")
        elif options.model == 'svc':

            features_compinations = [
                [
                    'lat', 'lon', 'pressure', 'max_temperature',
                    'min_temperature', 'mean_temperature', 'mean_dewpoint',
                    'mean_humidity', 'mean_winddirection', 'mean_windspeedms',
                    'max_windgust', 'max_precipitation1h', 'max_snowdepth',
                    'max_n', 'min_vis', 'min_clhb', 'max_precipitation3h'
                ],
                [
                    'pressure', 'max_temperature', 'min_temperature',
                    'mean_temperature', 'mean_dewpoint', 'mean_humidity',
                    'mean_winddirection', 'mean_windspeedms', 'max_windgust',
                    'max_precipitation1h', 'max_snowdepth', 'max_n', 'min_vis',
                    'min_clhb', 'max_precipitation3h'
                ],
                [
                    'pressure', 'min_temperature', 'mean_dewpoint',
                    'mean_winddirection', 'mean_windspeedms', 'max_windgust',
                    'max_precipitation1h', 'max_snowdepth', 'max_n', 'min_vis',
                    'min_clhb', 'max_precipitation3h'
                ],
                [
                    'pressure', 'min_temperature', 'mean_dewpoint',
                    'mean_winddirection', 'mean_windspeedms', 'max_snowdepth',
                    'max_n', 'min_vis', 'min_clhb', 'max_precipitation3h'
                ],
                [
                    'pressure', 'min_temperature', 'mean_dewpoint',
                    'mean_winddirection', 'mean_windspeedms', 'max_snowdepth',
                    'max_n', 'min_vis', 'min_clhb', 'max_precipitation1h'
                ],
                [
                    'pressure', 'min_temperature', 'mean_dewpoint',
                    'mean_winddirection', 'mean_windspeedms', 'max_snowdepth',
                    'min_vis', 'max_precipitation1h'
                ],
                [
                    'pressure', 'min_temperature', 'mean_winddirection',
                    'mean_windspeedms', 'max_snowdepth', 'max_precipitation1h'
                ]
            ]

            param_grid = {
                "C": [0.0001, 0.001, 0.01, 0.1, 1],
                "kernel": ['rbf', 'poly'],
                "degree": [2, 3],
                "gamma": [0.5],
                "coef0": [0.1],
                "probability": [True],
                "features": features_compinations
            }

            from lib.svc import SVCF
            model = SVCF(all_features=options.feature_params)
        else:
            raise ("No param_grid set for given model ({})".format(
                options.model))

        print(model.get_params().keys())

        ftwo_scorer = make_scorer(fbeta_score, beta=2)
        scoring = {
            'accuracy': 'accuracy',
            'precision': 'precision',
            'recall': 'recall',
            'f1': 'f1',
            'f2': ftwo_scorer
        }

        random_search = RandomizedSearchCV(model,
                                           param_distributions=param_grid,
                                           n_iter=int(options.n_iter_search),
                                           verbose=1,
                                           scoring=scoring,
                                           refit='recall',
                                           n_jobs=-1)

        random_search.fit(X_train, y_train)

        logging.info("RandomizedSearchCV done.")
        scores = ['accuracy', 'precision', 'recall', 'f1', 'f2']
        fname = options.output_path + '/random_search_cv_results.txt'
        io.report_cv_results(random_search.cv_results_,
                             scores=scores,
                             filename=fname,
                             ext_filename=fname)
        model = random_search.best_estimator_

        io.save_scikit_model(model,
                             filename=options.save_file,
                             ext_filename=options.save_file)
        if options.normalize:
            fname = options.save_path + '/xscaler.pkl'
            io.save_scikit_model(scaler, filename=fname, ext_filename=fname)

    else:
        logging.info('Training...')
        model.fit(X_train, y_train)

        # Save model and xscaler (no reason to save xscaler before the model has fitted as well)
        io.save_scikit_model(model,
                             filename=options.save_file,
                             ext_filename=options.save_file)
        if options.normalize:
            fname = options.save_path + '/xscaler.pkl'
            io.save_scikit_model(scaler, filename=fname, ext_filename=fname)

    # Metrics
    y_pred_proba = model.predict_proba(X_test)
    y_pred = np.argmax(y_pred_proba, axis=1)
    # We want [-1,1] classes as y values are
    y_pred[y_pred == 0] = -1

    acc = accuracy_score(y_test, y_pred)
    precision = precision_score(y_test, y_pred, average='binary')
    recall = recall_score(y_test, y_pred, average='binary')
    f1 = f1_score(y_test, y_pred, average='binary')

    logging.info('Accuracy: {}'.format(acc))
    logging.info('Precision: {}'.format(precision))
    logging.info('Recall: {}'.format(recall))
    logging.info('F1 score: {}'.format(f1))
    io.log_class_dist(y_pred, labels=[-1, 1])

    error_data = {
        'acc': [acc],
        'precision': [precision],
        'recall': [recall],
        'f1': [f1]
    }
    fname = '{}/training_time_validation_errors.csv'.format(
        options.output_path)
    io.write_csv(error_data, filename=fname, ext_filename=fname)

    # Confusion matrices
    fname = '{}/confusion_matrix_validation.png'.format(options.output_path)
    viz.plot_confusion_matrix(y_test, y_pred, np.arange(2), filename=fname)

    fname = '{}/confusion_matrix_validation_normalised.png'.format(
        options.output_path)
    viz.plot_confusion_matrix(y_test,
                              y_pred,
                              np.arange(2),
                              True,
                              filename=fname)

    # Precision-recall curve
    fname = '{}/precision-recall-curve.png'.format(options.output_path)
    viz.prec_rec_curve(y_test, y_pred_proba, filename=fname)

    # ROC
    fname = '{}/roc.png'.format(options.output_path)
    viz.plot_binary_roc(y_test, y_pred_proba, filename=fname)

    ############################################################################
    # EVALUATE
    ############################################################################
    if options.evaluate:
        logging.info('Loading test data...')
        test_data = bq.get_rows(dt.datetime.strptime('2010-01-01', "%Y-%m-%d"),
                                dt.datetime.strptime('2019-01-01', "%Y-%m-%d"),
                                loc_col='trainstation',
                                project=options.project,
                                dataset=options.feature_dataset,
                                table=options.test_table,
                                parameters=all_param_names)

        test_data = io.filter_train_type(labels_df=test_data,
                                         train_types=['K', 'L'],
                                         sum_types=True,
                                         train_type_column='train_type',
                                         location_column='trainstation',
                                         time_column='time',
                                         sum_columns=['delay'],
                                         aggs=aggs)

        # Sorting is actually not necessary. It's been useful for debugging.
        test_data.sort_values(by=['time', 'trainstation'], inplace=True)
        test_data.set_index('time', inplace=True)
        logging.info('Test data contain {} rows...'.format(len(test_data)))

        logging.info(
            'Adding binary class to the test dataset with limit {}...'.format(
                options.delay_limit))
        #logging.info('Adding binary class to the dataset with limit {}...'.format(limit))
        #data['class'] = data['count'].map(lambda x: 1 if x > options.delay_count_limit else -1)
        test_data['class'] = test_data['delay'].map(
            lambda x: 1 if x > options.delay_limit else -1)
        io.log_class_dist(test_data.loc[:, 'class'].values, labels=[-1, 1])

        if options.month:
            logging.info('Adding month to the test dataset...')
            test_data['month'] = test_data.index.map(lambda x: x.month)

        times = [('2011-02-01', '2011-03-01'), ('2016-06-01', '2016-07-01'),
                 ('2017-02-01', '2017-03-01'), ('2011-02-01', '2017-03-01')]
        for start, end in times:
            try:
                y_pred_proba, y_pred, y = predict_timerange(
                    test_data, options.feature_params, model, scaler, start,
                    end)
                perf_metrics(y_pred_proba, y_pred, y, start, end, viz, io)
            except EmptyDataError:
                logging.info('No data for {} - {}'.format(start, end))