class GaussianProcessClassifier(BaseEstimator, ClassifierMixin): """Gaussian process classification (GPC) based on Laplace approximation. The implementation is based on Algorithm 3.1, 3.2, and 5.1 of Gaussian Processes for Machine Learning (GPML) by Rasmussen and Williams. Internally, the Laplace approximation is used for approximating the non-Gaussian posterior by a Gaussian. Currently, the implementation is restricted to using the logistic link function. For multi-class classification, several binary one-versus rest classifiers are fitted. Note that this class thus does not implement a true multi-class Laplace approximation. Parameters ---------- kernel : kernel object The kernel specifying the covariance function of the GP. If None is passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that the kernel's hyperparameters are optimized during fitting. optimizer : string or callable, optional (default: "fmin_l_bfgs_b") Can either be one of the internally supported optimizers for optimizing the kernel's parameters, specified by a string, or an externally defined optimizer passed as a callable. If a callable is passed, it must have the signature:: def optimizer(obj_func, initial_theta, bounds): # * 'obj_func' is the objective function to be maximized, which # takes the hyperparameters theta as parameter and an # optional flag eval_gradient, which determines if the # gradient is returned additionally to the function value # * 'initial_theta': the initial value for theta, which can be # used by local optimizers # * 'bounds': the bounds on the values of theta .... # Returned are the best found hyperparameters theta and # the corresponding value of the target function. return theta_opt, func_min Per default, the 'fmin_l_bfgs_b' algorithm from scipy.optimize is used. If None is passed, the kernel's parameters are kept fixed. Available internal optimizers are:: 'fmin_l_bfgs_b' n_restarts_optimizer : int, optional (default: 0) The number of restarts of the optimizer for finding the kernel's parameters which maximize the log-marginal likelihood. The first run of the optimizer is performed from the kernel's initial parameters, the remaining ones (if any) from thetas sampled log-uniform randomly from the space of allowed theta-values. If greater than 0, all bounds must be finite. Note that n_restarts_optimizer=0 implies that one run is performed. max_iter_predict : int, optional (default: 100) The maximum number of iterations in Newton's method for approximating the posterior during predict. Smaller values will reduce computation time at the cost of worse results. warm_start : bool, optional (default: False) If warm-starts are enabled, the solution of the last Newton iteration on the Laplace approximation of the posterior mode is used as initialization for the next call of _posterior_mode(). This can speed up convergence when _posterior_mode is called several times on similar problems as in hyperparameter optimization. copy_X_train : bool, optional (default: True) If True, a persistent copy of the training data is stored in the object. Otherwise, just a reference to the training data is stored, which might cause predictions to change if the data is modified externally. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. multi_class: string, default : "one_vs_rest" Specifies how multi-class classification problems are handled. Supported are "one_vs_rest" and "one_vs_one". In "one_vs_rest", one binary Gaussian process classifier is fitted for each class, which is trained to separate this class from the rest. In "one_vs_one", one binary Gaussian process classifier is fitted for each pair of classes, which is trained to separate these two classes. The predictions of these binary predictors are combined into multi-class predictions. Note that "one_vs_one" does not support predicting probability estimates. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. Attributes ---------- kernel_ : kernel object The kernel used for prediction. In case of binary classification, the structure of the kernel is the same as the one passed as parameter but with optimized hyperparameters. In case of multi-class classification, a CompoundKernel is returned which consists of the different kernels used in the one-versus-rest classifiers. log_marginal_likelihood_value_ : float The log-marginal-likelihood of ``self.kernel_.theta`` classes_ : array-like, shape = (n_classes,) Unique class labels. n_classes_ : int The number of classes in the training data .. versionadded:: 0.18 """ def __init__(self, kernel=None, optimizer="fmin_l_bfgs_b", n_restarts_optimizer=0, max_iter_predict=100, warm_start=False, copy_X_train=True, random_state=None, multi_class="one_vs_rest", n_jobs=1): self.kernel = kernel self.optimizer = optimizer self.n_restarts_optimizer = n_restarts_optimizer self.max_iter_predict = max_iter_predict self.warm_start = warm_start self.copy_X_train = copy_X_train self.random_state = random_state self.multi_class = multi_class self.n_jobs = n_jobs def fit(self, X, y): """Fit Gaussian process classification model Parameters ---------- X : array-like, shape = (n_samples, n_features) Training data y : array-like, shape = (n_samples,) Target values, must be binary Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, multi_output=False) self.base_estimator_ = _BinaryGaussianProcessClassifierLaplace( self.kernel, self.optimizer, self.n_restarts_optimizer, self.max_iter_predict, self.warm_start, self.copy_X_train, self.random_state) self.classes_ = np.unique(y) self.n_classes_ = self.classes_.size if self.n_classes_ == 1: raise ValueError("GaussianProcessClassifier requires 2 or more " "distinct classes. Only class %s present." % self.classes_[0]) if self.n_classes_ > 2: if self.multi_class == "one_vs_rest": self.base_estimator_ = \ OneVsRestClassifier(self.base_estimator_, n_jobs=self.n_jobs) elif self.multi_class == "one_vs_one": self.base_estimator_ = \ OneVsOneClassifier(self.base_estimator_, n_jobs=self.n_jobs) else: raise ValueError("Unknown multi-class mode %s" % self.multi_class) self.base_estimator_.fit(X, y) if self.n_classes_ > 2: self.log_marginal_likelihood_value_ = np.mean( [estimator.log_marginal_likelihood() for estimator in self.base_estimator_.estimators_]) else: self.log_marginal_likelihood_value_ = \ self.base_estimator_.log_marginal_likelihood() return self def predict(self, X): """Perform classification on an array of test vectors X. Parameters ---------- X : array-like, shape = (n_samples, n_features) Returns ------- C : array, shape = (n_samples,) Predicted target values for X, values are from ``classes_`` """ check_is_fitted(self, ["classes_", "n_classes_"]) X = check_array(X) return self.base_estimator_.predict(X) def predict_proba(self, X): """Return probability estimates for the test vector X. Parameters ---------- X : array-like, shape = (n_samples, n_features) Returns ------- C : array-like, shape = (n_samples, n_classes) Returns the probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. """ check_is_fitted(self, ["classes_", "n_classes_"]) if self.n_classes_ > 2 and self.multi_class == "one_vs_one": raise ValueError("one_vs_one multi-class mode does not support " "predicting probability estimates. Use " "one_vs_rest mode instead.") X = check_array(X) return self.base_estimator_.predict_proba(X) @property def kernel_(self): if self.n_classes_ == 2: return self.base_estimator_.kernel_ else: return CompoundKernel( [estimator.kernel_ for estimator in self.base_estimator_.estimators_]) def log_marginal_likelihood(self, theta=None, eval_gradient=False): """Returns log-marginal likelihood of theta for training data. In the case of multi-class classification, the mean log-marginal likelihood of the one-versus-rest classifiers are returned. Parameters ---------- theta : array-like, shape = (n_kernel_params,) or none Kernel hyperparameters for which the log-marginal likelihood is evaluated. In the case of multi-class classification, theta may be the hyperparameters of the compound kernel or of an individual kernel. In the latter case, all individual kernel get assigned the same theta values. If None, the precomputed log_marginal_likelihood of ``self.kernel_.theta`` is returned. eval_gradient : bool, default: False If True, the gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta is returned additionally. Note that gradient computation is not supported for non-binary classification. If True, theta must not be None. Returns ------- log_likelihood : float Log-marginal likelihood of theta for training data. log_likelihood_gradient : array, shape = (n_kernel_params,), optional Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only returned when eval_gradient is True. """ check_is_fitted(self, ["classes_", "n_classes_"]) if theta is None: if eval_gradient: raise ValueError( "Gradient can only be evaluated for theta!=None") return self.log_marginal_likelihood_value_ theta = np.asarray(theta) if self.n_classes_ == 2: return self.base_estimator_.log_marginal_likelihood( theta, eval_gradient) else: if eval_gradient: raise NotImplementedError( "Gradient of log-marginal-likelihood not implemented for " "multi-class GPC.") estimators = self.base_estimator_.estimators_ n_dims = estimators[0].kernel_.n_dims if theta.shape[0] == n_dims: # use same theta for all sub-kernels return np.mean( [estimator.log_marginal_likelihood(theta) for i, estimator in enumerate(estimators)]) elif theta.shape[0] == n_dims * self.classes_.shape[0]: # theta for compound kernel return np.mean( [estimator.log_marginal_likelihood( theta[n_dims * i:n_dims * (i + 1)]) for i, estimator in enumerate(estimators)]) else: raise ValueError("Shape of theta must be either %d or %d. " "Obtained theta with shape %d." % (n_dims, n_dims * self.classes_.shape[0], theta.shape[0]))
class GaussianProcessClassifier(BaseEstimator, ClassifierMixin): """Gaussian process classification (GPC) based on Laplace approximation. The implementation is based on Algorithm 3.1, 3.2, and 5.1 of Gaussian Processes for Machine Learning (GPML) by Rasmussen and Williams. Internally, the Laplace approximation is used for approximating the non-Gaussian posterior by a Gaussian. Currently, the implementation is restricted to using the logistic link function. For multi-class classification, several binary one-versus rest classifiers are fitted. Note that this class thus does not implement a true multi-class Laplace approximation. Parameters ---------- kernel : kernel object The kernel specifying the covariance function of the GP. If None is passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that the kernel's hyperparameters are optimized during fitting. optimizer : string or callable, optional (default: "fmin_l_bfgs_b") Can either be one of the internally supported optimizers for optimizing the kernel's parameters, specified by a string, or an externally defined optimizer passed as a callable. If a callable is passed, it must have the signature:: def optimizer(obj_func, initial_theta, bounds): # * 'obj_func' is the objective function to be maximized, which # takes the hyperparameters theta as parameter and an # optional flag eval_gradient, which determines if the # gradient is returned additionally to the function value # * 'initial_theta': the initial value for theta, which can be # used by local optimizers # * 'bounds': the bounds on the values of theta .... # Returned are the best found hyperparameters theta and # the corresponding value of the target function. return theta_opt, func_min Per default, the 'fmin_l_bfgs_b' algorithm from scipy.optimize is used. If None is passed, the kernel's parameters are kept fixed. Available internal optimizers are:: 'fmin_l_bfgs_b' n_restarts_optimizer: int, optional (default: 0) The number of restarts of the optimizer for finding the kernel's parameters which maximize the log-marginal likelihood. The first run of the optimizer is performed from the kernel's initial parameters, the remaining ones (if any) from thetas sampled log-uniform randomly from the space of allowed theta-values. If greater than 0, all bounds must be finite. Note that n_restarts_optimizer=0 implies that one run is performed. max_iter_predict: int, optional (default: 100) The maximum number of iterations in Newton's method for approximating the posterior during predict. Smaller values will reduce computation time at the cost of worse results. warm_start : bool, optional (default: False) If warm-starts are enabled, the solution of the last Newton iteration on the Laplace approximation of the posterior mode is used as initialization for the next call of _posterior_mode(). This can speed up convergence when _posterior_mode is called several times on similar problems as in hyperparameter optimization. copy_X_train : bool, optional (default: True) If True, a persistent copy of the training data is stored in the object. Otherwise, just a reference to the training data is stored, which might cause predictions to change if the data is modified externally. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. multi_class: string, default: "one_vs_rest" Specifies how multi-class classification problems are handled. Supported are "one_vs_rest" and "one_vs_one". In "one_vs_rest", one binary Gaussian process classifier is fitted for each class, which is trained to separate this class from the rest. In "one_vs_one", one binary Gaussian process classifier is fitted for each pair of classes, which is trained to separate these two classes. The predictions of these binary predictors are combined into multi-class predictions. Note that "one_vs_one" does not support predicting probability estimates. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. Attributes ---------- kernel_ : kernel object The kernel used for prediction. In case of binary classification, the structure of the kernel is the same as the one passed as parameter but with optimized hyperparameters. In case of multi-class classification, a CompoundKernel is returned which consists of the different kernels used in the one-versus-rest classifiers. log_marginal_likelihood_value_: float The log-marginal-likelihood of ``self.kernel_.theta`` classes_ : array-like, shape = (n_classes,) Unique class labels. n_classes_ : int The number of classes in the training data """ def __init__(self, kernel=None, optimizer="fmin_l_bfgs_b", n_restarts_optimizer=0, max_iter_predict=100, warm_start=False, copy_X_train=True, random_state=None, multi_class="one_vs_rest", n_jobs=1): self.kernel = kernel self.optimizer = optimizer self.n_restarts_optimizer = n_restarts_optimizer self.max_iter_predict = max_iter_predict self.warm_start = warm_start self.copy_X_train = copy_X_train self.random_state = random_state self.multi_class = multi_class self.n_jobs = n_jobs def fit(self, X, y): """Fit Gaussian process classification model Parameters ---------- X : array-like, shape = (n_samples, n_features) Training data y : array-like, shape = (n_samples,) Target values, must be binary Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, multi_output=False) self.base_estimator_ = _BinaryGaussianProcessClassifierLaplace( self.kernel, self.optimizer, self.n_restarts_optimizer, self.max_iter_predict, self.warm_start, self.copy_X_train, self.random_state) self.classes_ = np.unique(y) self.n_classes_ = self.classes_.size if self.n_classes_ == 1: raise ValueError("GaussianProcessClassifier requires 2 or more " "distinct classes. Only class %s present." % self.classes_[0]) if self.n_classes_ > 2: if self.multi_class == "one_vs_rest": self.base_estimator_ = \ OneVsRestClassifier(self.base_estimator_, n_jobs=self.n_jobs) elif self.multi_class == "one_vs_one": self.base_estimator_ = \ OneVsOneClassifier(self.base_estimator_, n_jobs=self.n_jobs) else: raise ValueError("Unknown multi-class mode %s" % self.multi_class) self.base_estimator_.fit(X, y) if self.n_classes_ > 2: self.log_marginal_likelihood_value_ = np.mean([ estimator.log_marginal_likelihood() for estimator in self.base_estimator_.estimators_ ]) else: self.log_marginal_likelihood_value_ = \ self.base_estimator_.log_marginal_likelihood() return self def predict(self, X): """Perform classification on an array of test vectors X. Parameters ---------- X : array-like, shape = (n_samples, n_features) Returns ------- C : array, shape = (n_samples,) Predicted target values for X, values are from ``classes_`` """ check_is_fitted(self, ["classes_", "n_classes_"]) X = check_array(X) return self.base_estimator_.predict(X) def predict_proba(self, X): """Return probability estimates for the test vector X. Parameters ---------- X : array-like, shape = (n_samples, n_features) Returns ------- C : array-like, shape = (n_samples, n_classes) Returns the probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. """ check_is_fitted(self, ["classes_", "n_classes_"]) if self.n_classes_ > 2 and self.multi_class == "one_vs_one": raise ValueError("one_vs_one multi-class mode does not support " "predicting probability estimates. Use " "one_vs_rest mode instead.") X = check_array(X) return self.base_estimator_.predict_proba(X) @property def kernel_(self): if self.n_classes_ == 2: return self.base_estimator_.kernel_ else: return CompoundKernel([ estimator.kernel_ for estimator in self.base_estimator_.estimators_ ]) def log_marginal_likelihood(self, theta=None, eval_gradient=False): """Returns log-marginal likelihood of theta for training data. In the case of multi-class classification, the mean log-marginal likelihood of the one-versus-rest classifiers are returned. Parameters ---------- theta : array-like, shape = (n_kernel_params,) or none Kernel hyperparameters for which the log-marginal likelihood is evaluated. In the case of multi-class classification, theta may be the hyperparameters of the compound kernel or of an individual kernel. In the latter case, all individual kernel get assigned the same theta values. If None, the precomputed log_marginal_likelihood of ``self.kernel_.theta`` is returned. eval_gradient : bool, default: False If True, the gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta is returned additionally. Note that gradient computation is not supported for non-binary classification. If True, theta must not be None. Returns ------- log_likelihood : float Log-marginal likelihood of theta for training data. log_likelihood_gradient : array, shape = (n_kernel_params,), optional Gradient of the log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only returned when eval_gradient is True. """ check_is_fitted(self, ["classes_", "n_classes_"]) if theta is None: if eval_gradient: raise ValueError( "Gradient can only be evaluated for theta!=None") return self.log_marginal_likelihood_value_ theta = np.asarray(theta) if self.n_classes_ == 2: return self.base_estimator_.log_marginal_likelihood( theta, eval_gradient) else: if eval_gradient: raise NotImplementedError( "Gradient of log-marginal-likelhood not implemented for " "multi-class GPC.") estimators = self.base_estimator_.estimators_ n_dims = estimators[0].kernel_.n_dims if theta.shape[0] == n_dims: # use same theta for all sub-kernels return np.mean([ estimator.log_marginal_likelihood(theta) for i, estimator in enumerate(estimators) ]) elif theta.shape[0] == n_dims * self.classes_.shape[0]: # theta for compound kernel return np.mean([ estimator.log_marginal_likelihood(theta[n_dims * i:n_dims * (i + 1)]) for i, estimator in enumerate(estimators) ]) else: raise ValueError( "Shape of theta must be either %d or %d. " "Obtained theta with shape %d." % (n_dims, n_dims * self.classes_.shape[0], theta.shape[0]))
class GaussianProcessClassifier(GPC): def fit(self, X, y): """Fit Gaussian process classification model Parameters ---------- X : sequence of length n_samples Feature vectors or other representations of training data. Could either be array-like with shape = (n_samples, n_features) or a list of objects. y : array-like of shape (n_samples,) Target values, must be binary Returns ------- self : returns an instance of self. """ if self.kernel is None or self.kernel.requires_vector_input: X, y = check_X_y(X, y, multi_output=False, ensure_2d=True, dtype="numeric") else: X, y = check_X_y(X, y, multi_output=False, ensure_2d=False, dtype=None) self.base_estimator_ = BinaryGaussianProcessClassifier( self.kernel, self.optimizer, self.n_restarts_optimizer, self.max_iter_predict, self.warm_start, self.copy_X_train, self.random_state) self.classes_ = numpy.unique(y) self.n_classes_ = self.classes_.size if self.n_classes_ == 1: raise ValueError("GaussianProcessClassifier requires 2 or more " "distinct classes; got %d class (only class %s " "is present)" % (self.n_classes_, self.classes_[0])) if self.n_classes_ > 2: if self.multi_class == "one_vs_rest": self.base_estimator_ = \ OneVsRestClassifier(self.base_estimator_, n_jobs=self.n_jobs) elif self.multi_class == "one_vs_one": self.base_estimator_ = \ OneVsOneClassifier(self.base_estimator_, n_jobs=self.n_jobs) else: raise ValueError("Unknown multi-class mode %s" % self.multi_class) self.base_estimator_.fit(X, y) if self.n_classes_ > 2: self.log_marginal_likelihood_value_ = numpy.mean([ estimator.log_marginal_likelihood() for estimator in self.base_estimator_.estimators_ ]) else: self.log_marginal_likelihood_value_ = \ self.base_estimator_.log_marginal_likelihood() return self