예제 #1
0
def test_transform_target_regressor_multi_to_single():
    X = friedman[0]
    y = np.transpose([friedman[1], (friedman[1]**2 + 1)])

    def func(y):
        out = np.sqrt(y[:, 0]**2 + y[:, 1]**2)
        return out[:, np.newaxis]

    def inverse_func(y):
        return y

    tt = TransformedTargetRegressor(func=func,
                                    inverse_func=inverse_func,
                                    check_inverse=False)
    tt.fit(X, y)
    y_pred_2d_func = tt.predict(X)
    assert y_pred_2d_func.shape == (100, 1)

    # force that the function only return a 1D array
    def func(y):
        return np.sqrt(y[:, 0]**2 + y[:, 1]**2)

    tt = TransformedTargetRegressor(func=func,
                                    inverse_func=inverse_func,
                                    check_inverse=False)
    tt.fit(X, y)
    y_pred_1d_func = tt.predict(X)
    assert y_pred_1d_func.shape == (100, 1)

    assert_allclose(y_pred_1d_func, y_pred_2d_func)
예제 #2
0
def test_transform_target_regressor_multi_to_single():
    X = friedman[0]
    y = np.transpose([friedman[1], (friedman[1] ** 2 + 1)])

    def func(y):
        out = np.sqrt(y[:, 0] ** 2 + y[:, 1] ** 2)
        return out[:, np.newaxis]

    def inverse_func(y):
        return y

    tt = TransformedTargetRegressor(func=func, inverse_func=inverse_func,
                                    check_inverse=False)
    tt.fit(X, y)
    y_pred_2d_func = tt.predict(X)
    assert y_pred_2d_func.shape == (100, 1)

    # force that the function only return a 1D array
    def func(y):
        return np.sqrt(y[:, 0] ** 2 + y[:, 1] ** 2)

    tt = TransformedTargetRegressor(func=func, inverse_func=inverse_func,
                                    check_inverse=False)
    tt.fit(X, y)
    y_pred_1d_func = tt.predict(X)
    assert y_pred_1d_func.shape == (100, 1)

    assert_allclose(y_pred_1d_func, y_pred_2d_func)
예제 #3
0
def test_transform_target_regressor_ensure_y_array():
    # check that the target ``y`` passed to the transformer will always be a
    # numpy array. Similarly, if ``X`` is passed as a list, we check that the
    # predictor receive as it is.
    X, y = friedman
    tt = TransformedTargetRegressor(transformer=DummyCheckerArrayTransformer(),
                                    regressor=DummyCheckerListRegressor(),
                                    check_inverse=False)
    tt.fit(X.tolist(), y.tolist())
    tt.predict(X.tolist())
    assert_raises(AssertionError, tt.fit, X, y.tolist())
    assert_raises(AssertionError, tt.predict, X)
예제 #4
0
def test_transform_target_regressor_ensure_y_array():
    # check that the target ``y`` passed to the transformer will always be a
    # numpy array. Similarly, if ``X`` is passed as a list, we check that the
    # predictor receive as it is.
    X, y = friedman
    tt = TransformedTargetRegressor(transformer=DummyCheckerArrayTransformer(),
                                    regressor=DummyCheckerListRegressor(),
                                    check_inverse=False)
    tt.fit(X.tolist(), y.tolist())
    tt.predict(X.tolist())
    assert_raises(AssertionError, tt.fit, X, y.tolist())
    assert_raises(AssertionError, tt.predict, X)
예제 #5
0
ax0.scatter(y_test, y_pred)
ax0.plot([0, 2000], [0, 2000], '--k')
ax0.set_ylabel('Target predicted')
ax0.set_xlabel('True Target')
ax0.set_title('Ridge regression \n without target transformation')
ax0.text(
    100, 1750, r'$R^2$=%.2f, MAE=%.2f' %
    (r2_score(y_test, y_pred), median_absolute_error(y_test, y_pred)))
ax0.set_xlim([0, 2000])
ax0.set_ylim([0, 2000])

regr_trans = TransformedTargetRegressor(regressor=RidgeCV(),
                                        func=np.log1p,
                                        inverse_func=np.expm1)
regr_trans.fit(X_train, y_train)
y_pred = regr_trans.predict(X_test)

ax1.scatter(y_test, y_pred)
ax1.plot([0, 2000], [0, 2000], '--k')
ax1.set_ylabel('Target predicted')
ax1.set_xlabel('True Target')
ax1.set_title('Ridge regression \n with target transformation')
ax1.text(
    100, 1750, r'$R^2$=%.2f, MAE=%.2f' %
    (r2_score(y_test, y_pred), median_absolute_error(y_test, y_pred)))
ax1.set_xlim([0, 2000])
ax1.set_ylim([0, 2000])

f.suptitle("Synthetic data", y=0.035)
f.tight_layout(rect=[0.05, 0.05, 0.95, 0.95])
ax0.scatter(y_test, y_pred)
ax0.plot([0, 2000], [0, 2000], '--k')
ax0.set_ylabel('Target predicted')
ax0.set_xlabel('True Target')
ax0.set_title('Ridge regression \n without target transformation')
ax0.text(100, 1750, r'$R^2$=%.2f, MAE=%.2f' % (
    r2_score(y_test, y_pred), median_absolute_error(y_test, y_pred)))
ax0.set_xlim([0, 2000])
ax0.set_ylim([0, 2000])

regr_trans = TransformedTargetRegressor(regressor=RidgeCV(),
                                        func=np.log1p,
                                        inverse_func=np.expm1)
regr_trans.fit(X_train, y_train)
y_pred = regr_trans.predict(X_test)

ax1.scatter(y_test, y_pred)
ax1.plot([0, 2000], [0, 2000], '--k')
ax1.set_ylabel('Target predicted')
ax1.set_xlabel('True Target')
ax1.set_title('Ridge regression \n with target transformation')
ax1.text(100, 1750, r'$R^2$=%.2f, MAE=%.2f' % (
    r2_score(y_test, y_pred), median_absolute_error(y_test, y_pred)))
ax1.set_xlim([0, 2000])
ax1.set_ylim([0, 2000])

f.suptitle("Synthetic data", y=0.035)
f.tight_layout(rect=[0.05, 0.05, 0.95, 0.95])

###############################################################################