def test_run(): x, y = get_iris(True) print_summary(x) x, y = get_boston() print_summary(x) x, y = get_titanic(True) print_summary(x)
from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score from sklearn.linear_model import LogisticRegression from sklearn2.utils import model_name from sklearn2.datasets import get_iris # here we use the multi output format for multiclass classif # this make it possible to use roc_auc_score random.seed(0) pd.options.display.width = 160 x, y = get_iris(True) y2 = pd.get_dummies(y).values x_train, x_test, y_train, y_test, y2_train, y2_test = train_test_split( x, y, y2, test_size=0.33, random_state=42) rfc = RandomForestClassifier(n_estimators=100, oob_score=True, class_weight='balanced', random_state=0) dtc = DecisionTreeClassifier(criterion='entropy', max_features=0.85, min_samples_split=2, random_state=0, max_depth=14)