예제 #1
0
def test_lda_transform_mismatch():
    # test `n_features` mismatch in partial_fit and transform
    rng = np.random.RandomState(0)
    X = rng.randint(4, size=(20, 10))
    X_2 = rng.randint(4, size=(10, 8))

    n_components = rng.randint(3, 6)
    lda = LatentDirichletAllocation(n_components=n_components,
                                    random_state=rng)
    lda.partial_fit(X)
    with pytest.raises(ValueError, match=r"^The provided data has"):
        lda.partial_fit(X_2)
예제 #2
0
def test_lda_partial_fit_dim_mismatch():
    # test `n_features` mismatch in `partial_fit`
    rng = np.random.RandomState(0)
    n_components = rng.randint(3, 6)
    n_col = rng.randint(6, 10)
    X_1 = np.random.randint(4, size=(10, n_col))
    X_2 = np.random.randint(4, size=(10, n_col + 1))
    lda = LatentDirichletAllocation(n_components=n_components,
                                    learning_offset=5., total_samples=20,
                                    random_state=rng)
    lda.partial_fit(X_1)
    with pytest.raises(ValueError, match=r"^The provided data has"):
        lda.partial_fit(X_2)
예제 #3
0
def test_lda_partial_fit_multi_jobs():
    # Test LDA online training with multi CPU
    rng = np.random.RandomState(0)
    n_components, X = _build_sparse_mtx()
    lda = LatentDirichletAllocation(n_components=n_components, n_jobs=2,
                                    learning_offset=5., total_samples=30,
                                    random_state=rng)
    for i in range(2):
        lda.partial_fit(X)

    correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
    for c in lda.components_:
        top_idx = set(c.argsort()[-3:][::-1])
        assert tuple(sorted(top_idx)) in correct_idx_grps
예제 #4
0
def test_lda_partial_fit():
    # Test LDA online learning (`partial_fit` method)
    # (same as test_lda_batch)
    rng = np.random.RandomState(0)
    n_components, X = _build_sparse_mtx()
    lda = LatentDirichletAllocation(n_components=n_components,
                                    learning_offset=10., total_samples=100,
                                    random_state=rng)
    for i in range(3):
        lda.partial_fit(X)

    correct_idx_grps = [(0, 1, 2), (3, 4, 5), (6, 7, 8)]
    for c in lda.components_:
        top_idx = set(c.argsort()[-3:][::-1])
        assert tuple(sorted(top_idx)) in correct_idx_grps