def test_isotonic_regression(): y = np.array([3, 7, 5, 9, 8, 7, 10]) y_ = np.array([3, 6, 6, 8, 8, 8, 10]) assert_array_equal(y_, isotonic_regression(y)) y = np.array([10, 0, 2]) y_ = np.array([4, 4, 4]) assert_array_equal(y_, isotonic_regression(y)) x = np.arange(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(ir.transform(x), ir.predict(x)) # check that it is immune to permutation perm = np.random.permutation(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) assert_array_equal(ir.fit_transform(x[perm], y[perm]), ir.fit_transform(x, y)[perm]) assert_array_equal(ir.transform(x[perm]), ir.transform(x)[perm]) # check we don't crash when all x are equal: ir = IsotonicRegression() assert_array_equal(ir.fit_transform(np.ones(len(x)), y), np.mean(y))
def test_isotonic_regression_ties_secondary_(): """ Test isotonic regression fit, transform and fit_transform against the "secondary" ties method and "pituitary" data from R "isotone" package, as detailed in: J. d. Leeuw, K. Hornik, P. Mair, Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods Set values based on pituitary example and the following R command detailed in the paper above: > library("isotone") > data("pituitary") > res1 <- gpava(pituitary$age, pituitary$size, ties="secondary") > res1$x `isotone` version: 1.0-2, 2014-09-07 R version: R version 3.1.1 (2014-07-10) """ x = [8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14] y = [21, 23.5, 23, 24, 21, 25, 21.5, 22, 19, 23.5, 25] y_true = [ 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 24.25, 24.25 ] # Check fit, transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_almost_equal(ir.transform(x), y_true, 4) assert_array_almost_equal(ir.fit_transform(x, y), y_true, 4)
def test_isotonic_regression_with_ties_in_differently_sized_groups(): """ Non-regression test to handle issue 9432: https://github.com/scikit-learn/scikit-learn/issues/9432 Compare against output in R: > library("isotone") > x <- c(0, 1, 1, 2, 3, 4) > y <- c(0, 0, 1, 0, 0, 1) > res1 <- gpava(x, y, ties="secondary") > res1$x `isotone` version: 1.1-0, 2015-07-24 R version: R version 3.3.2 (2016-10-31) """ x = np.array([0, 1, 1, 2, 3, 4]) y = np.array([0, 0, 1, 0, 0, 1]) y_true = np.array([0., 0.25, 0.25, 0.25, 0.25, 1.]) ir = IsotonicRegression() ir.fit(x, y) assert_array_almost_equal(ir.transform(x), y_true) assert_array_almost_equal(ir.fit_transform(x, y), y_true)