def test_isotonic_dtype(): y = [2, 1, 4, 3, 5] weights = np.array([.9, .9, .9, .9, .9], dtype=np.float64) reg = IsotonicRegression() for dtype in (np.int32, np.int64, np.float32, np.float64): for sample_weight in (None, weights.astype(np.float32), weights): y_np = np.array(y, dtype=dtype) expected_dtype = \ check_array(y_np, dtype=[np.float64, np.float32], ensure_2d=False).dtype res = isotonic_regression(y_np, sample_weight=sample_weight) assert res.dtype == expected_dtype X = np.arange(len(y)).astype(dtype) reg.fit(X, y_np, sample_weight=sample_weight) res = reg.predict(X) assert res.dtype == expected_dtype
def predict(self, X): X = check_array(X) self.key = 1000 return np.ones(X.shape[0])
def transform(self, X): X = check_array(X) if X.shape[1] != self.X_shape_[1]: raise ValueError('Bad number of features') return sp.csr_matrix(X)
def fit(self, X, y=None): self.X_shape_ = check_array(X).shape return self
def predict(self, X): # return 1 if X has more than one element else return 0 X = check_array(X) if X.shape[0] > 1: return np.ones(X.shape[0]) return np.zeros(X.shape[0])
def transform(self, X): X = check_array(X) return X
def fit(self, X, y=None): X = check_array(X) return self
def predict(self, X): X = check_array(X) return np.ones(X.shape[0])
def predict(self, X): check_is_fitted(self) X = check_array(X) return np.ones(X.shape[0])