def test_hoeffding_tree(test_path): stream = RandomTreeGenerator(tree_random_state=23, sample_random_state=12, n_classes=4, n_cat_features=2, n_num_features=5, n_categories_per_cat_feature=5, max_tree_depth=6, min_leaf_depth=3, fraction_leaves_per_level=0.15) stream.prepare_for_use() nominal_attr_idx = [x for x in range(5, stream.n_features)] learner = HoeffdingTree(nominal_attributes=nominal_attr_idx) cnt = 0 max_samples = 5000 predictions = array('d') proba_predictions = [] wait_samples = 100 while cnt < max_samples: X, y = stream.next_sample() # Test every n samples if cnt % wait_samples == 0: predictions.append(learner.predict(X)[0]) proba_predictions.append(learner.predict_proba(X)[0]) learner.partial_fit(X, y) cnt += 1 expected_predictions = array('d', [0.0, 0.0, 1.0, 3.0, 0.0, 0.0, 3.0, 0.0, 1.0, 1.0, 2.0, 0.0, 2.0, 1.0, 1.0, 2.0, 1.0, 3.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 3.0, 1.0, 2.0, 1.0, 1.0, 3.0, 2.0, 1.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 0.0, 1.0, 2.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 3.0, 2.0]) test_file = os.path.join(test_path, 'test_hoeffding_tree.npz') data = np.load(test_file) expected_proba_predictions_0 = data["a"] expected_proba_predictions_1 = data["b"] assert np.alltrue(predictions == expected_predictions) assert np.alltrue(proba_predictions == expected_proba_predictions_0) or \ np.alltrue(proba_predictions == expected_proba_predictions_1) assert np.alltrue(predictions == expected_predictions) expected_info = 'HoeffdingTree: max_byte_size: 33554432 - memory_estimate_period: 1000000 - grace_period: 200 ' \ '- split_criterion: info_gain - split_confidence: 1e-07 - tie_threshold: 0.05 ' \ '- binary_split: False - stop_mem_management: False - remove_poor_atts: False ' \ '- no_pre_prune: False - leaf_prediction: nba - nb_threshold: 0 - nominal_attributes: [5, 6, 7,' \ ' 8, 9, 10, 11, 12, 13, 14] - ' assert learner.get_info() == expected_info expected_model_1 = 'Leaf = Class 1.0 | {0.0: 1423.0, 1.0: 1745.0, 2.0: 978.0, 3.0: 854.0}\n' expected_model_2 = 'Leaf = Class 1.0 | {1.0: 1745.0, 2.0: 978.0, 0.0: 1423.0, 3.0: 854.0}\n' assert (learner.get_model_description() == expected_model_1) \ or (learner.get_model_description() == expected_model_2)
def test_hoeffding_tree(): stream = RandomTreeGenerator(tree_seed=23, instance_seed=12, n_classes=4, n_nominal_attributes=2, n_numerical_attributes=5, n_values_per_nominal=5, max_depth=6, min_leaf_depth=3, fraction_leaves_per_level=0.15) stream.prepare_for_use() nominal_attr_idx = [ x for x in range(15, len(stream.get_attributes_header())) ] learner = HoeffdingTree(nominal_attributes=nominal_attr_idx) cnt = 0 max_samples = 5000 predictions = array('d') wait_samples = 100 while cnt < max_samples: X, y = stream.next_instance() # Test every n samples if cnt % wait_samples == 0: predictions.append(learner.predict(X)[0]) learner.partial_fit(X, y) cnt += 1 expected_predictions = array('d', [ 0.0, 3.0, 2.0, 1.0, 1.0, 2.0, 0.0, 2.0, 0.0, 3.0, 3.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 3.0, 0.0, 1.0, 1.0, 0.0, 2.0, 2.0, 1.0, 2.0, 0.0, 0.0, 0.0, 2.0, 1.0, 0.0, 2.0, 0.0, 2.0, 2.0, 0.0, 1.0, 1.0, 3.0, 1.0, 0.0, 3.0, 0.0, 1.0, 1.0, 0.0, 0.0 ]) assert np.alltrue(predictions == expected_predictions) expected_info = 'HoeffdingTree: max_byte_size: 33554432 - memory_estimate_period: 1000000 - grace_period: 200 ' \ '- split_criterion: info_gain - split_confidence: 1e-07 - tie_threshold: 0.05 ' \ '- binary_split: False - stop_mem_management: False - remove_poor_atts: False ' \ '- no_pre_prune: False - leaf_prediction: nba - nb_threshold: 0 - nominal_attributes: [] - ' assert learner.get_info() == expected_info expected_model_1 = 'Leaf = Class 1.0 | {0.0: 1384.0, 1.0: 1720.0, 2.0: 1005.0, 3.0: 891.0}\n' expected_model_2 = 'Leaf = Class 1.0 | {1.0: 1720.0, 2.0: 1005.0, 0.0: 1384.0, 3.0: 891.0}\n' assert (learner.get_model_description() == expected_model_1) \ or (learner.get_model_description() == expected_model_2)