예제 #1
0
def demo():
    """ _test_filters
    
    This demo test the MissingValuesCleaner filter. The transform is set 
    to clean any value equal to -47, replacing it with the median value 
    of the last 10 samples, or less if there aren't 10 samples available. 
    
    The output will be the 10 instances used in the transform. The first 
    9 are kept untouched, as they don't have any feature value of -47. The 
    last samples has its first feature value equal to -47, so it's replaced 
    by the median of the 9 first samples.
    
    """
    opt = FileOption('FILE', 'OPT_NAME', '../datasets/covtype.csv', 'csv', False)
    stream = FileStream(opt, -1, 1)
    stream.prepare_for_use()

    filter = MissingValuesCleaner(-47, 'median', 10)

    X, y = stream.next_instance(10)

    X[9, 0] = -47

    for i in range(10):
        temp = filter.partial_fit_transform([X[i].tolist()])
        print(temp)
예제 #2
0
def demo(output_file=None, instances=50000):
    """ _test_sam_knn_prequential

    This demo shows how to produce a prequential evaluation.

    The first thing needed is a stream. For this case we use a file stream 
    which gets its samples from the movingSquares.csv file, inside the datasets 
    folder.

    Then we need to setup a classifier, which in this case is an instance 
    of scikit-multiflow's SAMKNN. Then, optionally we create a 
    pipeline structure, initialized on that classifier.

    The evaluation is then run.

    Parameters
    ----------
    output_file: string
        The name of the csv output file

    instances: int
        The evaluation's max number of instances

    """
    # Setup the File Stream
    # opt = FileOption("FILE", "OPT_NAME", "../datasets/covtype.csv", "CSV", False)
    opt = FileOption("FILE", "OPT_NAME", "../datasets/movingSquares.csv",
                     "CSV", False)
    stream = FileStream(opt, -1, 1)
    # stream = WaveformGenerator()
    stream.prepare_for_use()

    # Setup the classifier
    # classifier = SGDClassifier()
    # classifier = KNNAdwin(k=8, max_window_size=2000,leaf_size=40, categorical_list=None)
    # classifier = OzaBaggingAdwin(h=KNN(k=8, max_window_size=2000, leaf_size=30, categorical_list=None))
    classifier = SAMKNN(n_neighbors=5,
                        knnWeights='distance',
                        maxSize=1000,
                        STMSizeAdaption='maxACCApprox',
                        useLTM=False)
    # classifier = SGDRegressor()
    # classifier = PerceptronMask()

    # Setup the pipeline
    #pipe = Pipeline([('Classifier', classifier)])

    # Setup the evaluator
    eval = EvaluatePrequential(pretrain_size=0,
                               max_instances=instances,
                               batch_size=1,
                               n_wait=100,
                               max_time=1000,
                               output_file=output_file,
                               task_type='classification',
                               show_plot=True,
                               plot_options=['performance'])

    # Evaluate
    eval.eval(stream=stream, classifier=classifier)
예제 #3
0
def demo():
    """ _test_knn
    
    This demo tests the KNN classifier on a file stream, which gives 
    instances coming from a SEA generator. 
    
    The test computes the performance of the KNN classifier as well as 
    the time to create the structure and classify max_samples (5000 by 
    default) instances.
    
    """
    opt = FileOption('FILE', 'OPT_NAME', '../datasets/sea_big.csv', 'csv',
                     False)
    stream = FileStream(opt, -1, 1)
    stream.prepare_for_use()
    train = 200
    X, y = stream.next_instance(train)
    #t = OneHotToCategorical([[10, 11, 12, 13],
    #                         [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
    #                          36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]])
    #t2 = OneHotToCategorical([[10, 11, 12, 13],
    #                         [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
    #                          36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]])
    start = timer()
    knn = KNN(k=8, max_window_size=2000, leaf_size=40)
    #pipe = Pipeline([('one_hot_to_categorical', t), ('KNN', knn)])

    #compare = KNeighborsClassifier(n_neighbors=8, algorithm='kd_tree', leaf_size=40, metric='euclidean')

    #pipe2 = Pipeline([('one_hot_to_categorical', t2), ('KNN', compare)])

    #pipe.fit(X, y)
    #pipe2.fit(X, y)
    knn.partial_fit(X, y)
    #compare.fit(X, y)

    n_samples = 0
    max_samples = 5000
    my_corrects = 0
    compare_corrects = 0

    while n_samples < max_samples:
        X, y = stream.next_instance()
        #my_pred = pipe.predict(X)
        my_pred = knn.predict(X)
        #compare_pred = pipe2.predict(X)
        #compare_pred = compare.predict(X)
        if y[0] == my_pred[0]:
            my_corrects += 1
        #if y[0] == compare_pred[0]:
        #    compare_corrects += 1
        n_samples += 1

    end = timer()

    print('Evaluation time: ' + str(end - start))
    print(str(n_samples) + ' samples analyzed.')
    print('My performance: ' + str(my_corrects / n_samples))
def demo_parameterized(h, dset="sea_stream.csv", show_plot=True): 
    # Setup Stream
    opt = FileOption("FILE", "OPT_NAME", "../datasets/"+dset, "CSV", False)
    stream = FileStream(opt, -1, 1)
    stream.prepare_for_use()

    # For each classifier, e...
    T_init = 100
    eval = EvaluatePrequential(pretrain_size=T_init, output_file='output.csv', max_instances=10000, batch_size=1, n_wait=1000, task_type='classification', show_plot=show_plot, plot_options=['performance'])
    eval.eval(stream=stream, classifier=h)
예제 #5
0
def test_random_rbf_generator(test_path, package_path):
    test_file = os.path.join(package_path,
                             'src/skmultiflow/datasets/sea_stream.csv')
    file_option = FileOption('FILE', 'sea', test_file, 'csv', False)
    stream = FileStream(file_option)
    stream.prepare_for_use()

    assert stream.estimated_remaining_instances() == 40000

    expected_header = ['attrib1', 'attrib2', 'attrib3']
    assert stream.get_attributes_header() == expected_header

    expected_classes = [0, 1]
    assert stream.get_classes() == expected_classes

    assert stream.get_classes_header() == ['class']

    assert stream.get_num_attributes() == 3

    assert stream.get_num_nominal_attributes() == 0

    assert stream.get_num_numerical_attributes() == 3

    assert stream.get_num_targets() == 1

    assert stream.get_num_values_per_nominal_attribute() == 0

    assert stream.get_plot_name() == 'sea_stream.csv - 2 class labels'

    assert stream.has_more_instances() is True

    assert stream.is_restartable() is True

    # Load test data corresponding to first 10 instances
    test_file = os.path.join(test_path, 'sea_stream.npz')
    data = np.load(test_file)
    X_expected = data['X']
    y_expected = data['y']

    X, y = stream.next_instance()
    assert np.alltrue(X[0] == X_expected[0])
    assert np.alltrue(y[0] == y_expected[0])

    X, y = stream.get_last_instance()
    assert np.alltrue(X[0] == X_expected[0])
    assert np.alltrue(y[0] == y_expected[0])

    stream.restart()
    X, y = stream.next_instance(10)
    assert np.alltrue(X == X_expected)
    assert np.alltrue(y == y_expected)
예제 #6
0
def demo():
    """ _test_mol

    This demo tests the MOL learner on a file stream, which reads from 
    the music.csv file.

    The test computes the performance of the MOL learner as well as 
    the time to create the structure and classify all the samples in 
    the file.

    """
    # Setup logging
    logging.basicConfig(format='%(message)s', level=logging.INFO)

    # Setup the file stream
    opt = FileOption("FILE", "OPT_NAME", "../datasets/music.csv", "CSV", False)
    stream = FileStream(opt, 0, 6)
    stream.prepare_for_use()

    # Setup the classifier, by default it uses Logistic Regression
    #classifier = MultiOutputLearner()
    #classifier = MultiOutputLearner(h=SGDClassifier(n_iter=100))
    classifier = MultiOutputLearner(h=Perceptron())

    # Setup the pipeline
    pipe = Pipeline([('classifier', classifier)])

    pretrain_size = 150
    logging.info('Pre training on %s samples', str(pretrain_size))
    X, y = stream.next_instance(pretrain_size)
    #classifier.fit(X, y)
    pipe.partial_fit(X, y, classes=stream.get_classes())
    count = 0
    true_labels = []
    predicts = []
    init_time = timer()
    logging.info('Evaluating...')
    while stream.has_more_instances():
        X, y = stream.next_instance()
        #p = classifier.predict(X)
        p = pipe.predict(X)
        predicts.extend(p)
        true_labels.extend(y)
        count += 1
    perf = hamming_score(true_labels, predicts)
    logging.info('Evaluation time: %s s', str(timer() - init_time))
    logging.info('Total samples analyzed: %s', str(count))
    logging.info('The classifier\'s static Hamming score    : %0.3f' % perf)
예제 #7
0
def demo():

    # The classifier we will use (other options: SAMKNN, LeverageBagging, SGD)
    h = HoeffdingTree()

    # Setup Stream
    opt = FileOption("FILE", "OPT_NAME", "../datasets/sea_stream.csv", "CSV",
                     False)
    stream = FileStream(opt, -1, 1)
    stream.prepare_for_use()

    T_init = 100
    eval = EvaluatePrequential(pretrain_size=T_init,
                               output_file='output.csv',
                               max_instances=10000,
                               batch_size=1,
                               n_wait=1000,
                               task_type='classification',
                               show_plot=True,
                               plot_options=['performance'])
    eval.eval(stream=stream, classifier=h)
예제 #8
0
def demo():
    """ _test_streams
    
    This demo tests if the streams are correctly generating samples.
    
    :return: 
    """
    opt = FileOption('FILE', 'OPT_NAME', '../datasets/covtype.csv', 'csv',
                     False)
    stream = FileStream(opt, -1, 1)
    stream.prepare_for_use()
    rbf_drift = RandomRBFGeneratorDrift(change_speed=41.00,
                                        num_centroids=50,
                                        model_seed=32523423,
                                        instance_seed=5435,
                                        num_classes=2,
                                        num_att=10,
                                        num_drift_centroids=50)
    rbf_drift.prepare_for_use()

    sea = SEAGenerator()

    print('1 instance:\n')

    X, y = stream.next_instance()
    print(X)
    print(y)

    X, y = sea.next_instance()
    print(X)
    print(y)

    print('\n\n10 instances:\n')
    X, y = stream.next_instance(10)
    print(X)
    print(y)

    X, y = sea.next_instance(10)
    print(X)
    print(y)
예제 #9
0
def demo():
    """ _test_stream_speed
    
    This demo tests the sample generation speed of the file stream.
    
    """
    # Setup the stream
    opt = FileOption("FILE", "OPT_NAME", "../datasets/covtype.csv", "CSV", False)
    stream = FileStream(opt, -1, 1)
    stream = RandomRBFGeneratorDrift()
    stream.prepare_for_use()

    # Test with RandomTreeGenerator
    #opt_list = [['-c', '2'], ['-o', '0'], ['-u', '5'], ['-v', '4']]
    #stream = RandomTreeGenerator(opt_list)
    #stream.prepare_for_use()

    # Setup the evaluator
    eval = EvaluateStreamGenerationSpeed(100000, float("inf"), None, 5)

    # Evaluate
    eval.eval(stream)
예제 #10
0
def demo():
    """ _test_kdtree_compare
    
    This demo compares creation and query speed for different kd tree 
    implementations. They are fed with instances from the covtype dataset. 
    
    Three kd tree implementations are compared: SciPy's KDTree, NumPy's 
    KDTree and scikit-multiflow's KDTree. For each of them the demo will 
    time the construction of the tree on 1000 instances, and then measure 
    the time to query 100 instances. The results are displayed in the 
    terminal.
    
    """
    warnings.filterwarnings("ignore", ".*Passing 1d.*")

    opt = FileOption('FILE', 'OPT_NAME', '../datasets/covtype.csv', 'csv', False)
    stream = FileStream(opt, -1, 1)
    stream.prepare_for_use()
    filter = OneHotToCategorical([[10, 11, 12, 13],
                             [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
                              36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]])

    X, y = stream.next_instance(1000)
    X = filter.transform(X)
    #print(X)

    X_find, y = stream.next_instance(100)
    X_find = filter.transform(X_find)
    print(X_find[4])
    # Normal kdtree
    start = timer()
    scipy = spatial.KDTree(X, leafsize=40)
    end = timer()
    print("\nScipy KDTree construction time: " + str(end-start))

    start = timer()
    for i in range(10):
        ind = scipy.query(X_find[i], 8)
        #print(ind)
    end = timer()
    print("Scipy KDTree query time: " + str(end - start))

    del scipy

    # Fast kdtree
    start = timer()
    opt = KDTree(X, metric='euclidean', return_distance=True)
    end = timer()
    print("\nOptimal KDTree construction time: " + str(end-start))

    start = timer()
    for i in range(100):
        ind, dist = opt.query(X_find[i], 8)
        #print(ind)
        #print(dist)
    end = timer()
    print("Optimal KDTree query time: " + str(end - start))

    del opt

    # Sklearn kdtree
    start = timer()
    sk = ng.KDTree(X, metric='euclidean')
    end = timer()
    print("\nSklearn KDTree construction time: " + str(end-start))

    start = timer()
    for i in range(100):
        ind, dist = sk.query(np.asarray(X_find[i]).reshape(1, -1), 8, return_distance=True)
        #print(ind)
        #print(dist)
    end = timer()
    print("Sklearn KDTree query time: " + str(end - start) + "\n")

    del sk
from skmultiflow.classification.lazy.knn_adwin import KNN
from skmultiflow.classification.trees.hoeffding_tree import HoeffdingTree
from skmultiflow.data.file_stream import FileStream
from skmultiflow.evaluation.evaluate_prequential import EvaluatePrequential
from skmultiflow.options.file_option import FileOption

from my_classifier import BatchClassifier

dataset = "elec"

# 1. Create a stream
opt = FileOption("FILE", "OPT_NAME", "./data/" + dataset + ".csv", "CSV",
                 False)
stream = FileStream(opt, -1, 1)
# 2. Prepare for use
stream.prepare_for_use()
# 2. Instantiate the HoeffdingTree classifier
h = [
    KNN(k=10, max_window_size=100, leaf_size=30),
    HoeffdingTree(),
    BatchClassifier(window_size=100, max_models=10),
]
# 3. Setup the evaluator
eval = EvaluatePrequential(pretrain_size=1000,
                           output_file='result_' + dataset + '.csv',
                           max_instances=10000,
                           batch_size=1,
                           n_wait=500,
                           max_time=1000000000,
                           task_type='classification',
                           show_plot=True,
예제 #12
0
def demo():
    """ _test_knn_adwin

    This demo tests the KNNAdwin classifier on a file stream, which gives 
    instances coming from a SEA generator. 
    
    The test computes the performance of the KNNAdwin classifier as well as 
    the time to create the structure and classify max_samples (10000 by 
    default) instances.
    
    """
    start = timer()
    logging.basicConfig(format='%(message)s', level=logging.INFO)
    #warnings.filterwarnings("ignore", ".*Passing 1d.*")
    opt = FileOption('FILE', 'OPT_NAME', '../datasets/sea_big.csv', 'csv',
                     False)
    stream = FileStream(opt, -1, 1)
    #stream = RandomRBFGeneratorDrift(change_speed=41.00, num_centroids=50, model_seed=32523423, instance_seed=5435,
    #                                 num_classes=2, num_att=10, num_drift_centroids=50)
    stream.prepare_for_use()
    t = OneHotToCategorical([[10, 11, 12, 13],
                             [
                                 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
                                 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
                                 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
                                 47, 48, 49, 50, 51, 52, 53
                             ]])
    t2 = OneHotToCategorical([[10, 11, 12, 13],
                              [
                                  14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
                                  25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
                                  36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
                                  47, 48, 49, 50, 51, 52, 53
                              ]])

    #knn = KNN(k=8, max_window_size=2000, leaf_size=40)
    knn = KNNAdwin(k=8, leaf_size=40, max_window_size=2000)
    #pipe = Pipeline([('one_hot_to_categorical', t), ('KNN', knn)])

    compare = KNeighborsClassifier(n_neighbors=8,
                                   algorithm='kd_tree',
                                   leaf_size=40,
                                   metric='euclidean')
    #pipe2 = Pipeline([('one_hot_to_categorical', t2), ('KNN', compare)])
    first = True
    train = 200
    if train > 0:
        X, y = stream.next_instance(train)
        #pipe.partial_fit(X, y, classes=stream.get_classes())
        #pipe.partial_fit(X, y, classes=stream.get_classes())
        #pipe2.fit(X, y)

        knn.partial_fit(X, y, classes=stream.get_classes())
        compare.fit(X, y)
        first = False
    n_samples = 0
    max_samples = 10000
    my_corrects = 0
    compare_corrects = 0

    while n_samples < max_samples:
        if n_samples % (max_samples / 20) == 0:
            logging.info('%s%%', str((n_samples // (max_samples / 20) * 5)))
        X, y = stream.next_instance()
        #my_pred = pipe.predict(X)
        my_pred = knn.predict(X)
        #my_pred = [1]
        if first:
            #pipe.partial_fit(X, y, classes=stream.get_classes())
            #pipe.partial_fit(X, y, classes=stream.get_classes())
            knn.partial_fit(X, y, classes=stream.get_classes())
            first = False
        else:
            #pipe.partial_fit(X, y)
            knn.partial_fit(X, y)
        #compare_pred = pipe2.predict(X)
        compare_pred = compare.predict(X)
        if y[0] == my_pred[0]:
            my_corrects += 1
        if y[0] == compare_pred[0]:
            compare_corrects += 1
        n_samples += 1

    end = timer()

    print('Evaluation time: ' + str(end - start))
    print(str(n_samples) + ' samples analyzed.')
    print('My performance: ' + str(my_corrects / n_samples))
    print('Compare performance: ' + str(compare_corrects / n_samples))
예제 #13
0
eval.eval(stream=stream, classifier=adf)

#
# # Eval Prequential with datasets.csv for ARF
#

# In[47]:

from skmultiflow.options.file_option import FileOption
from skmultiflow.data.file_stream import FileStream
from skmultiflow.evaluation.evaluate_prequential import EvaluatePrequential

# 1. Create a stream
#options = FileOption(option_value="../datasets/covtype.csv", file_extension="CSV")
#options = FileOption(option_value="../datasets/movingSquares.csv", file_extension="CSV")
options = FileOption(option_value="../datasets/sea_stream.csv",
                     file_extension="CSV")

stream = FileStream(options)

stream.prepare_for_use()

# 2. Instantiate the classifier
adf = AdaptiveRandomForest()

# 3. Setup the evaluator
eval = EvaluatePrequential(pretrain_size=1000,
                           max_instances=100000,
                           batch_size=1,
                           max_time=1000,
                           output_file='resultsPrequential.csv',
                           task_type='classification',
예제 #14
0
def demo(instances=2000):
    """ _test_comparison_prequential
    
    This demo will test a prequential evaluation when more than one learner is 
    passed, which makes it a comparison task.
    
    Parameters
    ----------
    instances: int
        The evaluation's maximum number of instances.
     
    """
    # Stream setup
    opt = FileOption("FILE", "OPT_NAME", "../datasets/covtype.csv", "CSV",
                     False)
    #opt = FileOption("FILE", "OPT_NAME", "../datasets/sea_big.csv", "CSV", False)
    stream = FileStream(opt, -1, 1)
    #stream = SEAGenerator(classification_function=2, instance_seed=53432, balance_classes=False)
    stream.prepare_for_use()
    # Setup the classifier
    clf = SGDClassifier()
    # classifier = KNNAdwin(k=8, max_window_size=2000,leaf_size=40, categorical_list=None)
    # classifier = OzaBaggingAdwin(h=KNN(k=8, max_window_size=2000, leaf_size=30, categorical_list=None))
    clf_one = KNNAdwin(k=8, max_window_size=1000, leaf_size=30)
    #clf_two = KNN(k=8, max_window_size=1000, leaf_size=30)
    #clf_two = LeverageBagging(h=KNN(), ensemble_length=2)

    t_one = OneHotToCategorical([[10, 11, 12, 13],
                                 [
                                     14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
                                     24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
                                     34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
                                     44, 45, 46, 47, 48, 49, 50, 51, 52, 53
                                 ]])
    #t_two = OneHotToCategorical([[10, 11, 12, 13],
    #                        [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
    #                        36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]])

    pipe_one = Pipeline([('one_hot_to_categorical', t_one), ('KNN', clf_one)])
    #pipe_two = Pipeline([('one_hot_to_categorical', t_two), ('KNN', clf_two)])

    classifier = [clf, pipe_one]
    # classifier = SGDRegressor()
    # classifier = PerceptronMask()

    # Setup the pipeline
    #pipe = Pipeline([('Classifier', classifier)])

    # Setup the evaluator
    eval = EvaluatePrequential(pretrain_size=2000,
                               output_file='teste.csv',
                               max_instances=instances,
                               batch_size=1,
                               n_wait=200,
                               max_time=1000,
                               task_type='classification',
                               show_plot=True,
                               plot_options=['performance', 'kappa_t'])

    # Evaluate
    eval.eval(stream=stream, classifier=classifier)
예제 #15
0
# 
# # Eval Holdout with datasets.csv for ARF 
# 

# In[ ]:


from skmultiflow.options.file_option import FileOption
from skmultiflow.data.file_stream import FileStream
from skmultiflow.evaluation.evaluate_holdout import EvaluateHoldout


# 1. Create a stream
#options = FileOption(option_value="../datasets/covtype.csv", file_extension="CSV")
options = FileOption(option_value="../datasets/movingSquares.csv", file_extension="CSV")
#options = FileOption(option_value="../datasets/sea_stream.csv", file_extension="CSV")

stream = FileStream(options)

stream.prepare_for_use()

# 2. Instantiate the classifier
adf = AdaptiveRandomForest()

# 3. Setup the evaluator
eval = EvaluateHoldout(pretrain_size=200, max_instances=10000, batch_size=1, max_time=1000, output_file='resultsHoldout.csv', task_type='classification', show_plot=True, plot_options=['kappa', 'performance'], test_size=5000, dynamic_test_set=True)

# 4. Run evaluation
eval.eval(stream=stream, classifier=adf)
예제 #16
0
from skmultiflow.classification.trees.hoeffding_adaptive_tree import HoeffdingAdaptiveTree
from skmultiflow.data.file_stream import FileStream
from skmultiflow.evaluation.evaluate_prequential import EvaluatePrequential
from skmultiflow.options.file_option import FileOption

dataset = "covtype"

# 1. Create a stream

opt = FileOption("FILE", "OPT_NAME", "skmultiflow/datasets/" + dataset + ".csv", "CSV", False)
stream = FileStream(opt, -1, 1)
# 2. Prepare for use
stream.prepare_for_use()
# 2. Instantiate the HoeffdingTree classifier
h = HoeffdingAdaptiveTree()
# 3. Setup the evaluator
eval = EvaluatePrequential(pretrain_size=1000, output_file='result_' + dataset + '.csv', max_instances=10000,
                           batch_size=1, n_wait=500, max_time=1000000000, task_type='classification', show_plot=True,
                           plot_options=['performance'])
# 4. Run
eval.eval(stream=stream, classifier=h)