def test_undirected(self): adjacency = test_graph() n = adjacency.shape[0] method = Spring() embedding = method.fit_transform(adjacency) self.assertEqual(embedding.shape, (n, 2)) pred1 = method.predict(adjacency[0]) pred2 = method.predict(adjacency[0].toarray()) self.assertEqual(pred1.shape, (2, )) self.assertAlmostEqual(np.linalg.norm(pred1 - pred2), 0) pred1 = method.predict(adjacency) pred2 = method.predict(adjacency.toarray()) self.assertTupleEqual(pred1.shape, (n, 2)) self.assertAlmostEqual(np.linalg.norm(pred1 - pred2), 0)
def test_undirected(self): adjacency = test_graph() n = adjacency.shape[0] for method in self.methods: with self.assertRaises(ValueError): method.predict(adjacency[0]) embedding = method.fit_transform(adjacency) self.assertEqual(embedding.shape, (n, 2)) ref = embedding[0] pred1 = method.predict(adjacency[0]) pred2 = method.predict(adjacency[0].toarray()) self.assertEqual(pred1.shape, (2, )) self.assertAlmostEqual(np.linalg.norm(pred1 - pred2), 0) self.assertAlmostEqual(np.linalg.norm(pred1 - ref), 0) pred1 = method.predict(adjacency) pred2 = method.predict(adjacency.toarray()) self.assertTupleEqual(pred1.shape, (n, 2)) self.assertAlmostEqual(np.linalg.norm(pred1 - pred2), 0) self.assertAlmostEqual(np.linalg.norm(pred1 - embedding), 0) method = Spring() embedding = method.fit_transform(adjacency) self.assertEqual(embedding.shape, (n, 2)) pred1 = method.predict(adjacency[0]) pred2 = method.predict(adjacency[0].toarray()) self.assertEqual(pred1.shape, (2, )) self.assertAlmostEqual(np.linalg.norm(pred1 - pred2), 0) pred1 = method.predict(adjacency) pred2 = method.predict(adjacency.toarray()) self.assertTupleEqual(pred1.shape, (n, 2)) self.assertAlmostEqual(np.linalg.norm(pred1 - pred2), 0)