def test_lhs_random_state(criterion): n_dim = 2 n_samples = 20 lhs = Lhs() h = lhs._lhs_normalized(n_dim, n_samples, 0) h2 = lhs._lhs_normalized(n_dim, n_samples, 0) assert_array_equal(h, h2) lhs = Lhs(criterion=criterion, iterations=100) h = lhs.generate([ (0., 1.), ] * n_dim, n_samples, random_state=0) h2 = lhs.generate([ (0., 1.), ] * n_dim, n_samples, random_state=0) assert_array_equal(h, h2)
def test_lhs_pdist(): n_dim = 2 n_samples = 20 lhs = Lhs() h = lhs._lhs_normalized(n_dim, n_samples, 0) d_classic = spatial.distance.pdist(np.array(h), 'euclidean') lhs = Lhs(criterion="maximin", iterations=100) h = lhs.generate([ (0., 1.), ] * n_dim, n_samples, random_state=0) d = spatial.distance.pdist(np.array(h), 'euclidean') assert np.min(d) > np.min(d_classic)