예제 #1
0
 def __init__(self,base_dir, cal=None, cal_each_mask=False):
     '''
     A Decoder for a Vector Coded Aperture Measurment System
     
     Parameters 
     -----------
     base_dir : str, or `unipath.Path`
         the base directory which holds all data
         
     cal: `skrf.Calibration` object or None
         the calibration template that is copied for each mask's 
         calibration. The `measurements` attribute provided by 
         the calibraition template is never used, only the `ideals`.
         if None, then no calibration is performed
     
     cal_each_mask : bool
         should a calibration be performed for each mask? If True, this 
         requires that `cal` represents a calibration template, for 
         which the `measurements` are provided for each mask dir 
     '''
     self.base_dir = Path( base_dir)
     self.cal = cal
     self.cal_each_mask = cal_each_mask
     # determine rank 
     max_dec = max([int(d) for d in self.decs.keys()])
     self.rank = int(sqrt(len('{0:b}'.format(max_dec))))
     
     self.frequency = rf.ran(str(self.decs.values()[0])).values()[0].frequency
예제 #2
0
파일: decoder.py 프로젝트: mbe9a/caik
def decode_with_rotation(dir_, f="634ghz", cal=None, averaging=True):
    """
    decode a hadamard-encoded dataset at a given frequency
    
    
    Examples
    ----------
    f = '634ghz'
    dir_= '../CAI/Bar Image/hadamard_2/Primary'

    a = decode(dir_=dir_, f = f,averaging =True)
    matshow(rf.complex_2_db(a))
    cb = colorbar()
    #clim(-26,-25)
    grid(0)

    """
    hexs = os.listdir(dir_)

    # determine resolution and rank
    res = int(sqrt(len(hexs)))
    rank = int(log2(res))

    # calculate inverse hadamard-delta transform`T`
    # this can be pre-computed
    bins = [hex2bin(k, rank=rank) for k in hexs]
    T = array([array(list(k), dtype=int) for k in bins])
    T_inv = inv(T)

    # create measurement frame `M` in hadamard space.
    M = []

    for k in hexs:
        b = array(list(hex2bin(k, rank=rank)), dtype=int)
        n = rf.ran(dir_ + "/" + k)

        if cal is not None:
            n = cal.apply_cal_to_list(n)
        if averaging:
            n = rf.average(n.values())
        else:
            n = n[sorted(n.keys())[-1]]

        s = n[f].s[0, 0, 0]  # pull out single complex number
        m = s * b
        M.append(m)

    M = array(M)

    # transform the frame `M` in hadamard space to
    # frame `A` in delta space
    A = T_inv.dot(M)

    # pixels lay along the diagonal.
    A_diag = array([A[k, k] for k in range(res ** 2)])

    # reshape the diagonal matrix into the image
    a = A_diag.reshape(res, res)
    return a, A
예제 #3
0
파일: decoder.py 프로젝트: mbe9a/caik
def decode_with_rotation(dir_, f='634ghz', cal=None, averaging=True):
    '''
    decode a hadamard-encoded dataset at a given frequency
    
    
    Examples
    ----------
    f = '634ghz'
    dir_= '../CAI/Bar Image/hadamard_2/Primary'

    a = decode(dir_=dir_, f = f,averaging =True)
    matshow(rf.complex_2_db(a))
    cb = colorbar()
    #clim(-26,-25)
    grid(0)

    '''
    hexs = os.listdir(dir_)

    #determine resolution and rank
    res = int(sqrt(len(hexs)))
    rank = int(log2(res))

    # calculate inverse hadamard-delta transform`T`
    # this can be pre-computed
    bins = [hex2bin(k, rank=rank) for k in hexs]
    T = array([array(list(k), dtype=int) for k in bins])
    T_inv = inv(T)

    # create measurement frame `M` in hadamard space.
    M = []

    for k in hexs:
        b = array(list(hex2bin(k, rank=rank)), dtype=int)
        n = rf.ran(dir_ + '/' + k)

        if cal is not None:
            n = cal.apply_cal_to_list(n)
        if averaging:
            n = rf.average(n.values())
        else:
            n = n[sorted(n.keys())[-1]]

        s = n[f].s[0, 0, 0]  # pull out single complex number
        m = s * b
        M.append(m)

    M = array(M)

    # transform the frame `M` in hadamard space to
    # frame `A` in delta space
    A = T_inv.dot(M)

    # pixels lay along the diagonal.
    A_diag = array([A[k, k] for k in range(res**2)])

    #reshape the diagonal matrix into the image
    a = A_diag.reshape(res, res)
    return a, A
예제 #4
0
 def raw_ntwk_of(self,dec,name):
     '''
     raw ntwk for a given mask, or pixel
     '''
     if isinstance(dec, tuple):
         ntwks = [self.raw_ntwk_of(k,name) for k in self.pixel2decs(*dec)]
         return rf.average(ntwks)
     ntwk = rf.ran(str(self.decs[dec]), contains=name).values()[0]
     
     return ntwk
예제 #5
0
파일: decoder.py 프로젝트: arsenovic/caik
    def da(self):
        '''
        a xarray.DataArray object representing the entire data-set
        '''
        # return cached value if it exists
        if self._da is not None:
            return self._da
            
        hexs= self.hexs
        
        #determine resolution and rank 
        res = int(sqrt(len(hexs)))
        rank = int(log2(res))
        
        M=[] # will hold weighted masks
         
        for k in hexs:
            n = rf.ran(self.dir_+'/'+k)
            
            if self.cal is not None:
                n = self.cal.apply_cal_to_list(n)
            
            if self.averaging:
                n = rf.average(n.values())
            else:
                n = n[sorted(n.keys())[-1]]
            
            s = n.s[:,0,0].reshape(-1,1,1) # pull out single complex number
            
            m = hex2mask(k,rank=rank) 
            #copy mask allong frequency dimension
            m = expand_dims(m,0).repeat(s.shape[0],0) 
            m = m*s
            M.append(m)

        M= array(M)
        n.frequency.unit='ghz'
        da = DataArray(M, coords=[('mask_hex',hexs),
                                  ('f_ghz',n.frequency.f_scaled),
                                  ('row',range(res)),
                                  ('col',range(res))])
        
        self._da = da # cache it
        return da
예제 #6
0
파일: decoder.py 프로젝트: mbe9a/caik
    def da(self):
        '''
        a xarray.DataArray object representing the entire data-set
        '''
        # return cached value if it exists
        if self._da is not None and caching:
            return self._da

        hexs = self.hexs
        res = self.res
        rank = self.rank

        M = []  # will hold weighted masks

        for k in hexs:
            n = rf.ran(self.dir_ + '/' + k)

            if self.cal is not None:
                n = self.cal.apply_cal_to_list(n)

            if self.averaging:
                n = rf.average(n.values())
            else:
                n = n[sorted(n.keys())[-1]]

            s = n.s[:, 0, 0].reshape(-1, 1,
                                     1)  # pull out single complex number

            m = hex2mask(k, rank=rank)
            #copy mask allong frequency dimension
            m = expand_dims(m, 0).repeat(s.shape[0], 0)
            m = m * s
            M.append(m)

        M = array(M)
        n.frequency.unit = 'ghz'
        da = DataArray(M,
                       coords=[('mask_hex', hexs),
                               ('f_ghz', n.frequency.f_scaled),
                               ('row', range(res)), ('col', range(res))])

        if caching:
            self._da = da
        return da
예제 #7
0
    def cal_of(self,dec):
        '''
        Calibration for a given mask, or pixel
        '''
        
        ##TODO: for no-cal or static cal this could be only calculated
        # once to improve performance
        if self.cal is None:
            freq = self.frequency
            n = len(freq)
            coefs ={'directivity':zeros(n),
                    'source match': zeros(n),
                    'reflection tracking':ones(n)}
            cal =OnePort.from_coefs(frequency=freq, coefs=coefs)
            return cal
            
        if not self.cal_each_mask:
            return self.cal
        else:
            # we want a calibration for each mask, so create the calbration
            # for this mask,or pixel
            cal = deepcopy(self.cal)
            ideals = cal.ideals

            if isinstance(dec, tuple):
                # decode the measurements 
                measured =[]
                for ideal in ideals:
                    m = self.raw_ntwk_of(dec,ideal.name)
                    measured.append(m)
                
            else:
                measured = rf.ran(self.decs[dec]).values()
            

            cal.measured, cal.ideals = rf.align_measured_ideals(measured,ideals)
            cal.name = str(dec)
            return cal
예제 #8
0
파일: decoder.py 프로젝트: arsenovic/caik
 def frequency(self):
     return rf.ran(self.dir_+'/'+self.hexs[0]).values()[0].frequency
예제 #9
0
 def _get_ntwk_dict(self):
     try:
         return rf.ran(self.input_dir)
     except(OSError):
         return {}
예제 #10
0
파일: decoder.py 프로젝트: mbe9a/caik
 def frequency(self):
     return rf.ran(self.dir_ + '/' + self.hexs[0]).values()[0].frequency