예제 #1
0
__author__ = ["Sebastiaan Koel"]
__all__ = []

import pytest
import pandas as pd
from sktime.datasets import load_uschange

_CHECKS = {
    'uschange': {
        'columns': ['Income', 'Production', 'Savings', 'Unemployment'],
        'len_y': 187,
        'len_X': 187,
        'data_types_X': {'Income': 'float64', 'Production': 'float64',
                         'Savings': 'float64', 'Unemployment': 'float64'},
        'data_type_y': 'float64',
        'data': load_uschange()
    },
}


@pytest.mark.parametrize("dataset", sorted(_CHECKS.keys()))
def test_data_loaders(dataset):
    """
    asserts if datasets are loaded correctly
    ----------
    dataset: dictionary with values to assert against should contain:
        'columns' : list with column names in correct order,
        'len_y'   : lenght of the y series (int),
        'len_X'   : lenght of the X series/dataframe (int),
        'data_types_X' : dictionary with column name keys and dtype as value,
        'data_type_y'  : dtype if y column (string)
예제 #2
0
from sktime.datasets import load_uschange
from sktime.utils._testing.estimator_checks import _assert_array_almost_equal

_CHECKS = {
    "uschange": {
        "columns": ["Income", "Production", "Savings", "Unemployment"],
        "len_y": 187,
        "len_X": 187,
        "data_types_X": {
            "Income": "float64",
            "Production": "float64",
            "Savings": "float64",
            "Unemployment": "float64",
        },
        "data_type_y": "float64",
        "data": load_uschange(),
    },
}


@pytest.mark.parametrize("dataset", sorted(_CHECKS.keys()))
def test_data_loaders(dataset):
    """
    asserts if datasets are loaded correctly
    ----------
    dataset: dictionary with values to assert against should contain:
        'columns' : list with column names in correct order,
        'len_y'   : lenght of the y series (int),
        'len_X'   : lenght of the X series/dataframe (int),
        'data_types_X' : dictionary with column name keys and dtype as value,
        'data_type_y'  : dtype if y column (string)