예제 #1
0
def test_weights_for_airline_averaging():
    y = load_airline()
    y_train, y_test = temporal_train_test_split(y)

    forecaster = OnlineEnsembleForecaster([
        ("ses", ExponentialSmoothing(seasonal="multiplicative", sp=12)),
        (
            "holt",
            ExponentialSmoothing(trend="add",
                                 damped_trend=False,
                                 seasonal="multiplicative",
                                 sp=12),
        ),
        (
            "damped_trend",
            ExponentialSmoothing(trend="add",
                                 damped_trend=True,
                                 seasonal="multiplicative",
                                 sp=12),
        ),
    ])

    forecaster.fit(y_train)

    expected = np.array([1 / 3, 1 / 3, 1 / 3])
    np.testing.assert_allclose(forecaster.weights, expected, rtol=1e-8)
예제 #2
0
def test_FittedParamExtractor(param_names):
    forecaster = ExponentialSmoothing()
    t = FittedParamExtractor(forecaster=forecaster, param_names=param_names)
    Xt = t.fit_transform(X_train)
    assert Xt.shape == (X_train.shape[0],
                        len(t._check_param_names(param_names)))

    # check specific value
    forecaster.fit(X_train.iloc[47, 0])
    fitted_param = forecaster.get_fitted_params()[param_names]
    assert Xt.iloc[47, 0] == fitted_param
예제 #3
0
def train_model_expSmooting(y, x, output: bool = True) -> ExponentialSmoothing:
    if output:
        logger.info("Training Exponential Smoothing model...")
        timer = Timer()
    model = ExponentialSmoothing(sp=24, seasonal='mul')

    y = pd.Series(data=np.delete(y, 0))
    x = pd.DataFrame(data=x[:-1])

    model.fit(y, x)

    if output:
        logger.info(f'Done in {timer}')
    return model
예제 #4
0
def run_sktimes(dept_id, store_id):
    # create timeseries for fbprophet
    ts = CreateTimeSeries(dept_id, store_id)

    # sktime ensembler
    forecaster = EnsembleForecaster([
        ('naive_ses', NaiveForecaster(sp=28, strategy="seasonal_last")),
        ('naive', NaiveForecaster(strategy="last")),
        ('theta_ses', ThetaForecaster(sp=28)), ('theta', ThetaForecaster()),
        ("exp_ses", ExponentialSmoothing(seasonal="additive", sp=28)),
        ("exp_damped",
         ExponentialSmoothing(trend='additive',
                              damped=True,
                              seasonal="additive",
                              sp=28))
    ])
    forecaster.fit(ts.y + 1)
    y_pred = forecaster.predict(np.arange(1, 29))
    return np.append(np.array([dept_id, store_id]), y_pred - 1)
예제 #5
0
    def get_test_params(cls):
        """Return testing parameter settings for the estimator.

        Returns
        -------
        params : dict or list of dict, default = {}
            Parameters to create testing instances of the class
            Each dict are parameters to construct an "interesting" test instance, i.e.,
            `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
            `create_test_instance` uses the first (or only) dictionary in `params`
        """
        from sktime.forecasting.exp_smoothing import ExponentialSmoothing

        return {"forecaster": ExponentialSmoothing()}
예제 #6
0
def test_exponential_smoothing():
    """Test bug in 1876.

    https://github.com/alan-turing-institute/sktime/issues/1876#issue-1103752402.
    """
    y = load_airline()
    # Change index to 10 min interval
    freq = "10Min"
    time_range = pd.date_range(
        pd.to_datetime("2019-01-01 00:00"),
        pd.to_datetime("2019-01-01 23:55"),
        freq=freq,
    )
    # Period Index does not work
    y.index = time_range.to_period()

    forecaster = ExponentialSmoothing(trend="add",
                                      seasonal="multiplicative",
                                      sp=12)
    forecaster.fit(y, fh=[1, 2, 3, 4, 5, 6])
    y_pred = forecaster.predict()
    pd.testing.assert_index_equal(
        y_pred.index, pd.period_range("2019-01-02 00:00", periods=6,
                                      freq=freq))
예제 #7
0
파일: app.py 프로젝트: frnietz/MLTS_multi
    def select_regressor(selection):
        regressors = {
        'LR': LinearRegression(),
        'KNN': KNeighborsRegressor(),
        'RF': RandomForestRegressor(),
        'GB': GradientBoostingRegressor(),
        'XGBoost': XGBRegressor(verbosity = 0),
        'SVM': LinearSVR(),
        'Extra Trees': ExtraTreesRegressor(),
        'Naive' : NaiveForecaster(strategy="last", sp=12),
        'Theta': ThetaForecaster(sp=12),
        'Exp_Smoothing': ExponentialSmoothing(trend="add", seasonal="multiplicative", sp=12),
        'TBATS': TBATS(sp=12, use_trend=True, use_box_cox=False)
         }

        return regressors[selection]
예제 #8
0
    def get_test_params(cls, parameter_set="default"):
        """Return testing parameter settings for the estimator.

        Parameters
        ----------
        parameter_set : str, default="default"
            Name of the set of test parameters to return, for use in tests. If no
            special parameters are defined for a value, will return `"default"` set.


        Returns
        -------
        params : dict or list of dict, default = {}
            Parameters to create testing instances of the class
            Each dict are parameters to construct an "interesting" test instance, i.e.,
            `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance.
            `create_test_instance` uses the first (or only) dictionary in `params`
        """
        from sktime.forecasting.exp_smoothing import ExponentialSmoothing

        return {"forecaster": ExponentialSmoothing()}
예제 #9
0
type(y)

plot_series(y)

y.index

y_train, y_test = temporal_train_test_split(y, test_size = 24)
plot_series(y_train, y_test)



fh = ForecastingHorizon(y_test.index, is_relative=False)
fh


ets_frcstr = ExponentialSmoothing(trend='additive', seasonal='additive', sp=12)

ets_frcstr.fit(y_train)



y_pred = ets_frcstr.predict(fh)
plot_series(y_train, y_test, y_pred, labels=['Обучающая', 'т', 'п'])

ets_frcstr.get_fitted_params()
ets_frcstr.get_params()

smape_loss(y_test, y_pred)

auto_ets_frr = AutoETS()
auto_ets_frr.fit(y_pred)
예제 #10
0
    plot_ys(train, test, y_pred, labels=['train', 'test', 'preds'])
    plt.title(
        f'strategy : {strategy} - smape_loss : {round(smape_loss(test,y_pred),4)}'
    )

# ## Tuning

# ### Tune Forecaster

# In[44]:

from sktime.forecasting.model_selection import SlidingWindowSplitter, ForecastingGridSearchCV

# In[33]:

forecaster = ExponentialSmoothing()

# In[39]:

forecaster_param_grid = {
    'trend': ['add', 'mul'],
    'seasonal': ['add', 'mul'],
    'sp': [12]
}

# In[40]:

cv = SlidingWindowSplitter(initial_window=int(len(train) * 0.5))
gscv = ForecastingGridSearchCV(forecaster,
                               cv=cv,
                               param_grid=forecaster_param_grid)
def forecast(data,
             customer_id,
             start='2017-01',
             end='2019-04',
             model_type='NaiveForecaster',
             test_size_month=5,
             model_storage_path=''):
    """
    Main function for build forecasting model on selected customer and time interval, save the model and plotting

    Parameters
    ----------
    data: pandas DataFrame
        main dataset with customer_id, product_id and Timestamp

    customer_id: int

    start: string
        start year and month in '2020-01' format

    end: string
        end year and month in '2020-01' format *** this month will not be included ***

    model_type:
        type of model to use in forecasting
        select from : ['NaiveForecaster', 'PolynomialTrendForecaster', 'ThetaForecaster', 'KNeighborsRegressor',
                       'ExponentialSmoothing', 'AutoETS', 'AutoARIMA', 'TBATS', 'BATS', 'EnsembleForecaster']

    test_size_month:
        number of month that will be excluded from end of interval to use as test dataset

    model_storage_path: string
        the folder that you want to store saved models
    Returns
    -------
    sMAPE Loss: print

    plot: matplotlib figure
        plot train, test and predicted values
    """
    y_train, y_test = temporal_train_test_split(prepare_data(data,
                                                             customer_id,
                                                             start=start,
                                                             end=end),
                                                test_size=test_size_month)
    fh = ForecastingHorizon(y_test.index, is_relative=False)

    if model_type == 'NaiveForecaster':
        forecaster = NaiveForecaster(strategy="last", sp=12)
    elif model_type == 'PolynomialTrendForecaster':
        forecaster = PolynomialTrendForecaster(degree=2)
    elif model_type == 'ThetaForecaster':
        forecaster = ThetaForecaster(sp=6)
    elif model_type == 'KNeighborsRegressor':
        regressor = KNeighborsRegressor(n_neighbors=1)
        forecaster = ReducedRegressionForecaster(regressor=regressor,
                                                 window_length=12,
                                                 strategy="recursive")
    elif model_type == 'ExponentialSmoothing':
        forecaster = ExponentialSmoothing(trend="add",
                                          seasonal="multiplicative",
                                          sp=12)
    elif model_type == 'AutoETS':
        forecaster = AutoETS(auto=True, sp=12, n_jobs=-1)
    elif model_type == 'AutoARIMA':
        forecaster = AutoARIMA(sp=12, suppress_warnings=True)
    elif model_type == 'TBATS':
        forecaster = TBATS(sp=12, use_trend=True, use_box_cox=False)
    elif model_type == 'BATS':
        forecaster = BATS(sp=12, use_trend=True, use_box_cox=False)
    elif model_type == 'EnsembleForecaster':
        forecaster = EnsembleForecaster([
            ("ses", ExponentialSmoothing(seasonal="multiplicative", sp=12)),
            (
                "holt",
                ExponentialSmoothing(trend="add",
                                     damped_trend=False,
                                     seasonal="multiplicative",
                                     sp=12),
            ),
            (
                "damped",
                ExponentialSmoothing(trend="add",
                                     damped_trend=True,
                                     seasonal="multiplicative",
                                     sp=12),
            ),
        ])

    try:
        forecaster.fit(y_train)
    except:
        forecaster.fit(y_train + 1)

    y_pred = forecaster.predict(fh)
    dump(
        forecaster,
        f'{model_storage_path}/{customer_id}_{model_type}_{start}_{end}_{test_size_month}.model'
    )

    print('sMAPE Loss :', smape_loss(y_pred, y_test))
    plot = plot_series(y_train,
                       y_test,
                       y_pred,
                       labels=["y_train", "y_test", "y_pred"])
    return plot
예제 #12
0
def genforecast(data):
    from sktime.forecasting.model_selection import temporal_train_test_split
    import numpy as np
    import math
    y_train, y_test = temporal_train_test_split(data)
    fh = np.arange(1, len(y_test) + 1)
    testct = len(y_test)

    from sktime.forecasting.naive import NaiveForecaster
    forecaster = NaiveForecaster(strategy="drift")
    forecaster.fit(y_train)
    y_pred_naive = forecaster.predict(fh)
    from sktime.performance_metrics.forecasting import smape_loss
    naive_acc = round(smape_loss(y_pred_naive, y_test), 4)
    #full model dev and forecast next 5 days
    forecaster.fit(data)
    futurewin = np.arange(1, 6)  # 5 day in future prediction
    fut_pred = forecaster.predict(futurewin)
    min_naive = round(min(fut_pred), 2)
    max_naive = round(max(fut_pred), 2)

    from sktime.forecasting.trend import PolynomialTrendForecaster
    forecaster = PolynomialTrendForecaster(degree=1)
    forecaster.fit(y_train)
    y_pred_poly = forecaster.predict(fh)
    from sktime.performance_metrics.forecasting import smape_loss
    poly_acc = round(smape_loss(y_pred_poly, y_test), 4)
    #full model dev and forecast next 5 days
    forecaster.fit(data)
    futurewin = np.arange(1, 6)  # 5 day in future prediction
    fut_pred = forecaster.predict(futurewin)
    min_poly = round(min(fut_pred), 2)
    max_poly = round(max(fut_pred), 2)

    from sktime.forecasting.compose import EnsembleForecaster
    from sktime.forecasting.exp_smoothing import ExponentialSmoothing
    sp1 = math.floor(len(y_test) / 4)
    sp2 = min(sp1, 12)
    spval = max(2, sp2)
    forecaster = EnsembleForecaster([
        ("ses", ExponentialSmoothing(seasonal="multiplicative", sp=spval)),
        ("holt",
         ExponentialSmoothing(trend="add",
                              damped=False,
                              seasonal="multiplicative",
                              sp=spval)),
        ("damped",
         ExponentialSmoothing(trend="add",
                              damped=True,
                              seasonal="multiplicative",
                              sp=spval))
    ])
    forecaster.fit(y_train)
    y_pred_ensem = forecaster.predict(fh)
    ensem_acc = round(smape_loss(y_test, y_pred_ensem), 4)
    #full model dev and forecast next 5 days
    forecaster.fit(data)
    futurewin = np.arange(1, 6)  # 5 day in future prediction
    fut_pred = forecaster.predict(futurewin)
    min_ensem = round(min(fut_pred), 2)
    max_ensem = round(max(fut_pred), 2)

    from sklearn.neighbors import KNeighborsRegressor
    regressor = KNeighborsRegressor(n_neighbors=1)
    from sktime.forecasting.compose import ReducedRegressionForecaster
    forecaster = ReducedRegressionForecaster(regressor=regressor,
                                             window_length=15,
                                             strategy="recursive")
    param_grid = {"window_length": [5, 10, 15]}
    from sktime.forecasting.model_selection import SlidingWindowSplitter
    from sktime.forecasting.model_selection import ForecastingGridSearchCV
    # we fit the forecaster on the initial window, and then use temporal cross-validation to find the optimal parameter
    cv = SlidingWindowSplitter(initial_window=int(len(y_train) * 0.5))
    gscv = ForecastingGridSearchCV(forecaster, cv=cv, param_grid=param_grid)
    gscv.fit(y_train)
    y_pred_redreg = gscv.predict(fh)
    redreg_acc = round(smape_loss(y_test, y_pred_redreg), 4)
    #full model dev and forecast next 5 days
    gscv.fit(data)
    futurewin = np.arange(1, 6)  # 5 day in future prediction
    fut_pred = gscv.predict(futurewin)
    min_redreg = round(min(fut_pred), 2)
    max_redreg = round(max(fut_pred), 2)

    return min_naive, max_naive, min_poly, max_poly, min_ensem, max_ensem, min_redreg, max_redreg, y_test, testct, y_pred_naive, naive_acc, y_pred_poly, poly_acc, y_pred_ensem, ensem_acc, y_pred_redreg, redreg_acc
예제 #13
0
     "steps": STEPS
 },
 ForecastingPipeline: {
     "steps": STEPS
 },
 EnsembleForecaster: {
     "forecasters": FORECASTERS
 },
 StackingForecaster: {
     "forecasters": FORECASTERS
 },
 AutoEnsembleForecaster: {
     "forecasters": FORECASTERS
 },
 Detrender: {
     "forecaster": ExponentialSmoothing()
 },
 ForecastingGridSearchCV: {
     "forecaster": NaiveForecaster(strategy="mean"),
     "cv": SingleWindowSplitter(fh=1),
     "param_grid": {
         "window_length": [2, 5]
     },
     "scoring": MeanAbsolutePercentageError(symmetric=True),
 },
 ForecastingRandomizedSearchCV: {
     "forecaster": NaiveForecaster(strategy="mean"),
     "cv": SingleWindowSplitter(fh=1),
     "param_distributions": {
         "window_length": [2, 5]
     },
예제 #14
0
import pandas as pd
import pytest

from sktime.forecasting.compose import EnsembleForecaster
from sktime.forecasting.compose._ensemble import VALID_AGG_FUNCS
from sktime.forecasting.exp_smoothing import ExponentialSmoothing
from sktime.forecasting.naive import NaiveForecaster
from sktime.forecasting.trend import PolynomialTrendForecaster
from sktime.utils._testing.forecasting import make_forecasting_problem


@pytest.mark.parametrize(
    "forecasters",
    [
        [("trend", PolynomialTrendForecaster()), ("naive", NaiveForecaster())],
        [("trend", PolynomialTrendForecaster()), ("ses", ExponentialSmoothing())],
    ],
)
def test_avg_mean(forecasters):
    """Assert `mean` aggfunc returns the same values as `average` with equal weights."""
    y = make_forecasting_problem()
    forecaster = EnsembleForecaster(forecasters)
    forecaster.fit(y, fh=[1, 2, 3])
    mean_pred = forecaster.predict()

    forecaster_1 = EnsembleForecaster(forecasters, aggfunc="mean", weights=[1, 1])
    forecaster_1.fit(y, fh=[1, 2, 3])
    avg_pred = forecaster_1.predict()

    pd.testing.assert_series_equal(mean_pred, avg_pred)
예제 #15
0
    
    [0 1 2 3 4 5 6 7 8 9] [10]
''')

st.write('''
    ### 4.2 Statistical forecasters
    
    sktime基于statsmodels中的实现,具有多种统计预测算法。 
    
    例如,要将指数平滑与可加趋势成分和可乘季节性一起使用,我们可以编写以下内容。注意,由于这是每月数据,所以季节性周期(sp)或每年的周期数为12。
''')

from sktime.forecasting.exp_smoothing import ExponentialSmoothing

forecaster = ExponentialSmoothing(trend="add",
                                  seasonal="multiplicative",
                                  sp=12)
forecaster.fit(y_train)
y_pred = forecaster.predict(fh)
plot_ys(y_train, y_test, y_pred, labels=["y_train", "y_test", "y_pred"])
st.pyplot()
st.write("smape_loss(y_test, y_pred):", smape_loss(y_test, y_pred))

st.write('''
    另一个常见模型是ARIMA模型。 
    在sktime中,我们连接pmdarima,这是一个用于自动选择最佳ARIMA模型的软件包。 
    这是因为搜索了许多可能的模型参数,因此可能需要更长的时间。
''')

from sktime.forecasting.arima import AutoARIMA
예제 #16
0
def main():
    df = datasets.load_airline(
    )  #Univariate, monthly records from 1949 to 60 (144 records)
    y_train, y_test = temporal_train_test_split(
        df, test_size=36)  #36 months for testing

    forecaster = NaiveForecaster(
        strategy='seasonal_last', sp=12
    )  #model strategy: last, mean, seasonal_last. sp=12months (yearly season)
    forecaster.fit(y_train)  #fit
    fh = np.arange(1,
                   len(y_test) +
                   1)  #forecast horizon: array with the same lenght of y_test
    y_pred = forecaster.predict(fh)  #pred

    forecaster2 = AutoARIMA(sp=12, suppress_warnings=True, trace=1)
    forecaster2.fit(y_train)
    y_pred2 = forecaster2.predict(fh)

    forecaster3 = ExponentialSmoothing(trend='add',
                                       damped='True',
                                       seasonal='multiplicative',
                                       sp=12)
    forecaster3.fit(y_train)
    y_pred3 = forecaster3.predict(fh)

    forecaster4 = ThetaForecaster(sp=12)
    forecaster4.fit(y_train)
    y_pred4 = forecaster4.predict(fh)

    forecaster5 = EnsembleForecaster([
        ('NaiveForecaster', NaiveForecaster(strategy='seasonal_last', sp=12)),
        ('AutoARIMA', AutoARIMA(sp=12, suppress_warnings=True)),
        ('Exp Smoothing',
         ExponentialSmoothing(trend='add',
                              damped='True',
                              seasonal='multiplicative',
                              sp=12)), ('Theta', ThetaForecaster(sp=12))
    ])
    forecaster5.fit(y_train)
    y_pred5 = forecaster5.predict(fh)

    plot_ys(y_train,
            y_test,
            y_pred,
            y_pred2,
            y_pred3,
            y_pred4,
            y_pred5,
            labels=[
                'Train', 'Test', 'Naive Forecaster', 'AutoARIMA',
                'Exp Smoothing', 'Theta', 'Ensemble'
            ])
    plt.xlabel('Months')
    plt.ylabel('Number of flights')
    plt.title(
        'Time series of the number of international flights in function of time'
    )
    plt.show()

    print('SMAPE Error for NaiveForecaster is:',
          100 * round(smape_loss(y_test, y_pred), 3), '%')
    print('SMAPE Error for AutoARIMA is:',
          100 * round(smape_loss(y_test, y_pred2), 3), '%')
    print('SMAPE Error for Exp Smoothing is:',
          100 * round(smape_loss(y_test, y_pred3), 3), '%')
    print('SMAPE Error for Theta is:',
          100 * round(smape_loss(y_test, y_pred4), 3), '%')
    print('SMAPE Error for Ensemble is:',
          100 * round(smape_loss(y_test, y_pred5), 3), '%')
예제 #17
0
from scipy.stats import gmean
from sktime.forecasting.compose import EnsembleForecaster
from sktime.forecasting.exp_smoothing import ExponentialSmoothing
from sktime.forecasting.naive import NaiveForecaster
from sktime.forecasting.trend import PolynomialTrendForecaster

from sktime.utils._testing.forecasting import make_forecasting_problem


@pytest.mark.parametrize(
    "forecasters",
    [
        [("trend", PolynomialTrendForecaster()), ("naive", NaiveForecaster())],
        [("trend", PolynomialTrendForecaster()),
         ("ses", ExponentialSmoothing())],
    ],
)
def test_avg_mean(forecasters):
    """Assert `mean` aggfunc returns the same values as `average` with equal weights."""
    y = make_forecasting_problem()
    forecaster = EnsembleForecaster(forecasters)
    forecaster.fit(y, fh=[1, 2, 3])
    mean_pred = forecaster.predict()

    forecaster_1 = EnsembleForecaster(forecasters,
                                      aggfunc="mean",
                                      weights=[1, 1])
    forecaster_1.fit(y, fh=[1, 2, 3])
    avg_pred = forecaster_1.predict()
예제 #18
0
import pandas as pd
import pytest

from sktime.forecasting.compose import ColumnEnsembleForecaster
from sktime.forecasting.exp_smoothing import ExponentialSmoothing
from sktime.forecasting.naive import NaiveForecaster
from sktime.forecasting.trend import PolynomialTrendForecaster


@pytest.mark.parametrize(
    "forecasters",
    [
        [
            ("trend", PolynomialTrendForecaster(), 0),
            ("naive", NaiveForecaster(), 1),
            ("ses", ExponentialSmoothing(), 2),
        ]
    ],
)
@pytest.mark.parametrize(
    "fh", [(np.arange(1, 11)), (np.arange(1, 33)), (np.arange(1, 3))]
)
def test_column_ensemble_shape(forecasters, fh):
    """Check the shape of the returned prediction."""
    y = pd.DataFrame(np.random.randint(0, 100, size=(100, 3)), columns=list("ABC"))
    forecaster = ColumnEnsembleForecaster(forecasters)
    forecaster.fit(y, fh=fh)
    actual = forecaster.predict()
    assert actual.shape == (len(fh), y.shape[1])

예제 #19
0
def test_set_params():
    params = {"trend": "additive"}

    f = ExponentialSmoothing(**params)
    f.fit(y_train, fh=1)
    expected = f.predict()

    f = ExponentialSmoothing()
    f.set_params(**params)
    f.fit(y_train, fh=1)
    y_pred = f.predict()

    assert_array_equal(y_pred, expected)
예제 #20
0
from sktime.forecasting.theta import ThetaForecaster
from sktime.forecasting.trend import PolynomialTrendForecaster
from sktime.transformers.single_series.boxcox import BoxCoxTransformer
from sktime.transformers.single_series.detrend import ConditionalDeseasonalizer
from sktime.transformers.single_series.detrend import Detrender
from xgboost import XGBRegressor

from sktime.performance_metrics.forecasting import mase_loss
from sktime.performance_metrics.forecasting import smape_loss
from sktime.utils.validation.forecasting import check_sp
from sktime.utils.validation.forecasting import check_y
from statsmodels.tsa.stattools import acf

SEASONAL_MODEL = "multiplicative"

ses = ExponentialSmoothing()
holt = ExponentialSmoothing(trend="add", damped=False)
damped = ExponentialSmoothing(trend="add", damped=True)


def M4_owa_loss(mase, smape, naive2_mase, naive2_smape):
    """overall weighted average of sMAPE and MASE loss used in M4 competition
    References
    ----------
    ..[1]  https://github.com/Mcompetitions/M4-methods/blob/master
    /Benchmarks%20and%20Evaluation.R
    """
    return ((np.nanmean(smape) / np.mean(naive2_smape)) +
            (np.nanmean(mase) / np.mean(naive2_mase))) / 2

예제 #21
0
        SeriesToSeriesRowTransformer(SERIES_TO_SERIES_TRANSFORMER,
                                     check_transformer=False),
    ),
    (
        "transformer2",
        SeriesToSeriesRowTransformer(SERIES_TO_SERIES_TRANSFORMER,
                                     check_transformer=False),
    ),
]
REGRESSOR = LinearRegression()
TIME_SERIES_CLASSIFIER = TimeSeriesForest(n_estimators=3)
TIME_SERIES_CLASSIFIERS = [
    ("tsf1", TIME_SERIES_CLASSIFIER),
    ("tsf2", TIME_SERIES_CLASSIFIER),
]
FORECASTER = ExponentialSmoothing()
FORECASTERS = [("ses1", FORECASTER), ("ses2", FORECASTER)]
STEPS = [
    ("transformer", Detrender(ThetaForecaster())),
    ("forecaster", NaiveForecaster()),
]
ESTIMATOR_TEST_PARAMS = {
    OnlineEnsembleForecaster: {
        "forecasters": FORECASTERS
    },
    FeatureUnion: {
        "transformer_list": TRANSFORMERS
    },
    DirectRegressionForecaster: {
        "regressor": REGRESSOR
    },
예제 #22
0
파일: app.py 프로젝트: frnietz/MLTS_multi

if uploaded_file is not None:
    df, df2 = load_data(uploaded_file)
    # prepare models
    models = []
    models.append(('LR', LinearRegression()))
    models.append(('KNN', KNeighborsRegressor()))
    models.append(('RF', RandomForestRegressor()))
    models.append(('GB', GradientBoostingRegressor()))
    models.append(('XGBoost', XGBRegressor(verbosity = 0)))
    models.append(('SVM', LinearSVR()))
    models.append(('Extra Trees', ExtraTreesRegressor()))
    models.append(('Naive', NaiveForecaster(strategy="last", sp=12)))
    models.append(('Theta', ThetaForecaster(sp=12)))
    models.append(('Exp_Smoothing', ExponentialSmoothing(trend="add", seasonal="additive", sp=12)))
    models.append(('TBATS', TBATS(sp=12, use_trend=True, use_box_cox=False)))
    
    forecast_horizon = st.sidebar.slider(label = 'Forecast Length (months)',min_value = 3, max_value = 36, value = 12)
    window_length = st.sidebar.slider(label = 'Sliding Window Length ',min_value = 1, value = 12)
    # evaluate each model in turn
    results1 = []
    names = []
    dn_forecast = []
    dn_test =[]
    
    
    for name, model in models:
        if name == 'LR' or name == 'KNN' or name == 'RF' or name == 'GB' or name == 'XGBoost' or name == 'SVM' or name == 'Extra Trees':
            forecaster = ReducedRegressionForecaster(regressor=model, window_length=window_length,strategy='recursive')
        else: