def rotate_old_root(tuple_arg, lhs_num, pref, tiles): (symbol, lhs, rhs) = tuple_arg new_lhs = list(lhs) del new_lhs[lhs_num] tile_new_pt1 = list(tiles[symbol][0]) tmp = tile_new_pt1.pop(lhs_num + 1) tile_new_pt1[0] = tmp new_tile = (tile_new_pt1, tiles[symbol][1], tiles[symbol][2], tiles[symbol][3]) new_tile = functions.tile_normalize(new_tile) if check_tile_forward_connectivity(new_tile): symbol = functions.tile_index(new_tile, tiles) return((symbol, new_lhs, pref + lhs[lhs_num])) else: # TILE NOT connected return(())
def rotate_new_fin(tuple_arg, qfin, pref, tiles): (symbol, lhs, rhs) = tuple_arg (aa, b, c, d) = tiles[symbol] a = list(aa) # !!!! call by value/call by name !!!! @#$%^%^&**( a.append(a[0]) del a[0] lhs.append(pref + rhs) # the output state "rhs" is changed to "pref+rhs" input state rhs = qfin # a new outpust state of the rule (a, lhs) = functions.paralel_sort(a, lhs) a = [[]] + a new_tile = functions.tile_normalize((a, b, c, d)) if check_tile_forward_connectivity(new_tile): symbol = functions.tile_index(new_tile, tiles) return((symbol, lhs, rhs)) else: # TILE NOT connected return(())
def rotate_intermediate(tuple_arg, lhs_num, pref, tiles): (symbol, lhs, rhs) = tuple_arg new_lhs = list(lhs) del new_lhs[lhs_num] new_lhs.append(pref + rhs) tile_new_pt1 = list(tiles[symbol][0]) tmp = tile_new_pt1.pop(lhs_num + 1) tile_new_pt1.append(tile_new_pt1[0]) del tile_new_pt1[0] (tile_new_pt1, new_lhs) = functions.paralel_sort(tile_new_pt1, new_lhs) tile_new_pt1 = [tmp] + tile_new_pt1 new_tile = (tile_new_pt1, tiles[symbol][1], tiles[symbol][2], tiles[symbol][3]) new_tile = functions.tile_normalize(new_tile) if check_tile_forward_connectivity(new_tile): symbol = functions.tile_index(new_tile, tiles) return((symbol, new_lhs, pref + lhs[lhs_num])) else: # TILE NOT connected return(())
def sl2ta(preds, sig, global_params, tiles, root_rule): # create the finite tree automaton and a set of tiles based on # the preprocessed system of predicates and its signatures #'fin': 'f', aut = {'rules': [], 'fin': root_rule} eq_edges = 0 for p in preds.keys(): (sig_fw, sig_bw, sig_eq) = sig[p] (params, rules) = preds[p] # check that root rule has no parameters if p == root_rule and not (params == [''] or params == []): raise InputError("Root predicate has parameters") for (al, pt, calls, equal) in rules: x_sets = [] lhs = [] null = [] self = [] par = [] if al in global_params: par.append("al:%s" % al) for x in equal: if x in global_params: par.append("al:%s" % x) # sort the parameters (it will be done in equal way for all the rules) par = sorted(par) for x in range(0, len(pt)): if (pt[x] in global_params) and not (pt[x] in [al] + equal): par.append("%i:%s" % (x, pt[x])) if pt[x] == al: self.append(x) if pt[x] == "nil": null.append(x) tmp = 1 x_m1 = [] for x in sig_bw: x_m1.append(pt.index(params[x])) x_m1 = sorted(x_m1) for x in sig_eq: if params[x] in equal + [al]: x_m1.append("al") elif params[x] in pt: x_m1.append("s%i" % pt.index(params[x])) else: x_m1.append("X" + params[x]) eq_edges = 1 # create the sets x_i^{fw} for i>=0 and place them into x_sets array for (call_name, call_pars) in calls: xi = [] (c_fw, c_bw, c_eq) = sig[call_name] for s in c_fw: xi.append(pt.index(call_pars[s])) xi = sorted(xi) # sort variable indicies for s in c_eq: if call_pars[s] in equal + [al]: xi.append("al") elif call_pars[s] in pt: xi.append("s%i" % pt.index(call_pars[s])) else: xi.append("X" + call_pars[s]) eq_edges = 1 x_sets.append(xi) lhs.append(call_name) # x_m1 contains input ports # x_sets now contains output ports # sort output ports according to selectors in paralel with lhs (the automata states) (x_sets, lhs) = functions.paralel_sort(x_sets, lhs) x_sets = [x_m1] + x_sets tile = (x_sets, null, self, par) tile = functions.tile_normalize(tile) # get an index to tiles list and use it as alphabet symbol symbol = functions.tile_index(tile, tiles) aut['rules'].append((symbol, lhs, p)) return aut, eq_edges