def testRaiseValueErrorWithInvalidDepthMultiplier(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) with self.assertRaises(ValueError): _ = inception_v2.inception_v2(inputs, num_classes, depth_multiplier=-0.1) with self.assertRaises(ValueError): _ = inception_v2.inception_v2(inputs, num_classes, depth_multiplier=0.0)
def testTrainEvalWithReuse(self): train_batch_size = 5 eval_batch_size = 2 height, width = 150, 150 num_classes = 1000 train_inputs = random_ops.random_uniform( (train_batch_size, height, width, 3)) inception_v2.inception_v2(train_inputs, num_classes) eval_inputs = random_ops.random_uniform( (eval_batch_size, height, width, 3)) logits, _ = inception_v2.inception_v2(eval_inputs, num_classes, reuse=True) predictions = math_ops.argmax(logits, 1) with self.test_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (eval_batch_size, ))
def testLogitsNotSqueezed(self): num_classes = 25 images = random_ops.random_uniform([1, 224, 224, 3]) logits, _ = inception_v2.inception_v2(images, num_classes=num_classes, spatial_squeeze=False) with self.test_session() as sess: variables.global_variables_initializer().run() logits_out = sess.run(logits) self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])
def testBuildClassificationNetwork(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, end_points = inception_v2.inception_v2(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV2/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue('Predictions' in end_points) self.assertListEqual(end_points['Predictions'].get_shape().as_list(), [batch_size, num_classes])
def testHalfSizeImages(self): batch_size = 5 height, width = 112, 112 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, end_points = inception_v2.inception_v2(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV2/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_5c'] self.assertListEqual(pre_pool.get_shape().as_list(), [batch_size, 4, 4, 1024])
def testEvaluation(self): batch_size = 2 height, width = 224, 224 num_classes = 1000 eval_inputs = random_ops.random_uniform((batch_size, height, width, 3)) logits, _ = inception_v2.inception_v2(eval_inputs, num_classes, is_training=False) predictions = math_ops.argmax(logits, 1) with self.test_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(predictions) self.assertEquals(output.shape, (batch_size, ))
def testBuildEndPointsWithDepthMultiplierGreaterThanOne(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = random_ops.random_uniform((batch_size, height, width, 3)) _, end_points = inception_v2.inception_v2(inputs, num_classes) endpoint_keys = [ key for key in end_points.keys() if key.startswith('Mixed') or key.startswith('Conv') ] _, end_points_with_multiplier = inception_v2.inception_v2( inputs, num_classes, scope='depth_multiplied_net', depth_multiplier=2.0) for key in endpoint_keys: original_depth = end_points[key].get_shape().as_list()[3] new_depth = end_points_with_multiplier[key].get_shape().as_list( )[3] self.assertEqual(2.0 * original_depth, new_depth)
def testUnknownBatchSize(self): batch_size = 1 height, width = 224, 224 num_classes = 1000 inputs = array_ops.placeholder(dtypes.float32, (None, height, width, 3)) logits, _ = inception_v2.inception_v2(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV2/Logits')) self.assertListEqual(logits.get_shape().as_list(), [None, num_classes]) images = random_ops.random_uniform((batch_size, height, width, 3)) with self.test_session() as sess: sess.run(variables.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEquals(output.shape, (batch_size, num_classes))
def testUnknownImageShape(self): ops.reset_default_graph() batch_size = 2 height, width = 224, 224 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = array_ops.placeholder(dtypes.float32, shape=(batch_size, None, None, 3)) logits, end_points = inception_v2.inception_v2(inputs, num_classes) self.assertTrue(logits.op.name.startswith('InceptionV2/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Mixed_5c'] feed_dict = {inputs: input_np} variables.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])