def test_all_even(self): """ @summary: This test creates a surface and runs each implementation of the algorithm and checks that the results are the same """ SURFACE_WIDTH = 1000 SURFACE_HEIGHT = 1000 STEP_SIZE = .2 CELL_SIZE = .005 TILE_SIZE = 1.0 NUM_CONES = 100 NUM_ELLIPSOIDS = 100 MAX_HEIGHT = 50 MAX_RADIUS = 200 NUM_WORKERS = 1 # Generate surface sg = SurfaceGenerator(SURFACE_HEIGHT, SURFACE_WIDTH, 0.0, 0.0, CELL_SIZE, defVal=0) sg.addRandom(numCones=NUM_CONES, numEllipsoids=NUM_ELLIPSOIDS, maxHeight=MAX_HEIGHT, maxRad=MAX_RADIUS) # Make sure that we have at least one source cell if np.min(sg.grid) > 0: sg.grid[0,0] = 0 # Write out grid sg.writeGrid(self.surfaceFn) inputGrid = np.loadtxt(self.surfaceFn, dtype=int, comments='', skiprows=6) # Run Dijkstra serialInstance = SingleTileSerialDijkstraLCP(self.surfaceFn, self.serialCostFn, seaLevelRiseCostFn) serialInstance.findSourceCells() serialInstance.calculate() # Verify grid serialAry = np.loadtxt(self.serialCostFn, dtype=int, comments='', skiprows=6) self._verifyGrid(serialAry, inputGrid) # Run parallel Dijkstra parInstance = SingleTileParallelDijkstraLCP(self.surfaceFn, self.parCostFn, seaLevelRiseCostFn) parInstance.setMaxWorkers(16) parInstance.setStepSize(.20) parInstance.findSourceCells() parInstance.calculate() # Compare serial and parallel single tile parAry = np.loadtxt(self.parCostFn, dtype=int, comments='', skiprows=6) # Verify parallel run self._verifyGrid(parAry, inputGrid) #print len(np.where(serialAry != parAry)) assert np.array_equal(serialAry, parAry) # Split surface splitTile(self.surfaceFn, TILE_SIZE, self.mtSurfaceDir) # Split cost surface splitTile(self.parCostFn, TILE_SIZE, self.mtCmpDir) # Run multi-tile mtInstance = MultiTileWqParallelDijkstraLCP(self.mtSurfaceDir, self.mtCostDir, self.mtOutDir, TILE_SIZE, STEP_SIZE, summaryFn=self.mtSummaryFn) # Run print "Starting workers" mtInstance.startWorkers(NUM_WORKERS) mtInstance.calculate() # Only on success print "Stopping workers" mtInstance.stopWorkers() # Compare output directories assert self._checkOutputs(self.mtCostDir, self.mtCmpDir)
outF.write("%s\n" % ','.join(headers)) for ss in STEP_SIZES: for fn in glob.glob(searchPath): print "Step size:", ss print "Filename:", fn tileStatsFn = os.path.join(args.outputDir, '%s-%s.csv' % (ss, os.path.basename(fn))) if not os.path.exists(tileStatsFn): try: costFn = 'cost.asc' atime = time.time() tile = SingleTileParallelDijkstraLCP(fn, costFn, seaLevelRiseCostFn) tile.setMaxWorkers(50) tile.findSourceCells() tile.setStepSize(ss) tile.calculate() btime = time.time() tile.writeStats(os.path.join(args.outputDir, '%s-%s.csv' % (ss, os.path.basename(fn)))) dtime = btime - atime mtx = np.loadtxt(fn, dtype=int, skiprows=6) rows, cols = mtx.shape outF.write("%s," % fn) # File name outF.write("%s," % rows) # Rows outF.write("%s," % cols) # Columns outF.write("%s," % ss) # Step size outF.write("%s," % dtime) # Running time outF.write("%s," % mtx.min()) # Minimum