예제 #1
0
    def test_dataframe(self):
        df = pd.DataFrame(self.arr_2d)
        appended = tsatools.add_trend(df)
        expected = df.copy()
        expected['const'] = self.c
        tm.assert_frame_equal(expected, appended)

        prepended = tsatools.add_trend(df, prepend=True)
        expected = df.copy()
        expected.insert(0, 'const', self.c)
        tm.assert_frame_equal(expected, prepended)

        df = pd.DataFrame(self.arr_2d)
        appended = tsatools.add_trend(df, trend='t')
        expected = df.copy()
        expected['trend'] = self.t
        tm.assert_frame_equal(expected, appended)

        df = pd.DataFrame(self.arr_2d)
        appended = tsatools.add_trend(df, trend='ctt')
        expected = df.copy()
        expected['const'] = self.c
        expected['trend'] = self.t
        expected['trend_squared'] = self.t**2
        tm.assert_frame_equal(expected, appended)
예제 #2
0
    def test_series(self):
        s = pd.Series(self.arr_1d)
        appended = tsatools.add_trend(s)
        expected = pd.DataFrame(s)
        expected['const'] = self.c
        tm.assert_frame_equal(expected, appended)

        prepended = tsatools.add_trend(s, prepend=True)
        expected = pd.DataFrame(s)
        expected.insert(0, 'const', self.c)
        tm.assert_frame_equal(expected, prepended)

        s = pd.Series(self.arr_1d)
        appended = tsatools.add_trend(s, trend='ct')
        expected = pd.DataFrame(s)
        expected['const'] = self.c
        expected['trend'] = self.t
        tm.assert_frame_equal(expected, appended)
예제 #3
0
 def test_mixed_recarray(self):
     dt = np.dtype([('c0', np.float64), ('c1', np.int8), ('c2', 'S4')])
     ra = np.array([(1.0, 1, 'aaaa'), (1.1, 2, 'bbbb')],
                   dtype=dt).view(np.recarray)
     added = tsatools.add_trend(ra, trend='ct')
     dt = np.dtype([('c0', np.float64), ('c1', np.int8), ('c2', 'S4'),
                    ('const', np.float64), ('trend', np.float64)])
     expected = np.array([(1.0, 1, 'aaaa', 1.0, 1.0),
                          (1.1, 2, 'bbbb', 1.0, 2.0)],
                         dtype=dt).view(np.recarray)
     assert_equal(added, expected)
예제 #4
0
    def test_duplicate_const(self):
        # TODO: parametrize?
        df = pd.DataFrame(self.c)
        for trend in ['c', 'ct']:
            for data in [self.c, df]:
                with pytest.raises(ValueError):
                    tsatools.add_trend(x=data,
                                       trend=trend,
                                       has_constant='raise')

        skipped = tsatools.add_trend(self.c, trend='c')
        assert_equal(skipped, self.c[:, None])

        skipped_const = tsatools.add_trend(self.c,
                                           trend='ct',
                                           has_constant='skip')
        expected = np.vstack((self.c, self.t)).T
        assert_equal(skipped_const, expected)

        added = tsatools.add_trend(self.c, trend='c', has_constant='add')
        expected = np.vstack((self.c, self.c)).T
        assert_equal(added, expected)

        added = tsatools.add_trend(self.c, trend='ct', has_constant='add')
        expected = np.vstack((self.c, self.c, self.t)).T
        assert_equal(added, expected)
예제 #5
0
파일: tools.py 프로젝트: jbrockmendel/sm2
def add_constant(data, prepend=True, has_constant='skip'):
    """
    Adds a column of ones to an array

    Parameters
    ----------
    data : array-like
        ``data`` is the column-ordered design matrix
    prepend : bool
        If true, the constant is in the first column.  Else the constant is
        appended (last column).
    has_constant : str {'raise', 'add', 'skip'}
        Behavior if ``data`` already has a constant. The default will return
        data without adding another constant. If 'raise', will raise an
        error if a constant is present. Using 'add' will duplicate the
        constant, if one is present.

    Returns
    -------
    data : array, recarray or DataFrame
        The original values with a constant (column of ones) as the first or
        last column. Returned value depends on input type.

    Notes
    -----
    When the input is recarray or a pandas Series or DataFrame, the added
    column's name is 'const'.
    """
    if _is_using_pandas(data, None) or _is_recarray(data):
        from sm2.tsa.tsatools import add_trend
        return add_trend(data, trend='c',
                         prepend=prepend,
                         has_constant=has_constant)

    # Special case for NumPy
    x = np.asanyarray(data)
    if x.ndim == 1:
        x = x[:, None]
    elif x.ndim > 2:  # pragma: no cover
        raise ValueError('Only implementd 2-dimensional arrays')

    is_nonzero_const = np.ptp(x, axis=0) == 0
    is_nonzero_const &= np.all(x != 0.0, axis=0)
    if is_nonzero_const.any():
        if has_constant == 'skip':
            return x
        elif has_constant == 'raise':
            raise ValueError("data already contains a constant")

    x = [np.ones(x.shape[0]), x]
    x = x if prepend else x[::-1]
    return np.column_stack(x)
예제 #6
0
    def _stackX(self, k_ar, trend):
        """
        Private method to build the RHS matrix for estimation.

        Columns are trend terms then lags.
        """
        endog = self.endog
        X = lagmat(endog, maxlag=k_ar, trim='both')
        k_trend = util.get_trendorder(trend)
        if k_trend:
            X = add_trend(X, prepend=True, trend=trend)
        self.k_trend = k_trend  # TODO: Don't set this here
        return X
예제 #7
0
    def test_recarray(self):
        df = pd.DataFrame(self.arr_2d)
        recarray = df.to_records(index=False)
        appended = tsatools.add_trend(recarray)
        expected = pd.DataFrame(self.arr_2d)
        expected['const'] = self.c
        expected = expected.to_records(index=False)
        assert_equal(expected, appended)

        prepended = tsatools.add_trend(recarray, prepend=True)
        expected = pd.DataFrame(self.arr_2d)
        expected.insert(0, 'const', self.c)
        expected = expected.to_records(index=False)
        assert_equal(expected, prepended)

        appended = tsatools.add_trend(recarray, trend='ctt')
        expected = pd.DataFrame(self.arr_2d)
        expected['const'] = self.c
        expected['trend'] = self.t
        expected['trend_squared'] = self.t**2
        expected = expected.to_records(index=False)
        assert_equal(expected, appended)
예제 #8
0
    def test_array(self):
        base = np.vstack((self.arr_1d, self.c, self.t, self.t**2)).T
        assert_equal(tsatools.add_trend(self.arr_1d), base[:, :2])
        assert_equal(tsatools.add_trend(self.arr_1d, trend='t'), base[:,
                                                                      [0, 2]])
        assert_equal(tsatools.add_trend(self.arr_1d, trend='ct'), base[:, :3])
        assert_equal(tsatools.add_trend(self.arr_1d, trend='ctt'), base)

        base = np.hstack(
            (self.c[:, None], self.t[:, None], self.t[:,
                                                      None]**2, self.arr_2d))
        assert_equal(tsatools.add_trend(self.arr_2d, prepend=True),
                     base[:, [0, 3, 4]])

        assert_equal(tsatools.add_trend(self.arr_2d, trend='t', prepend=True),
                     base[:, [1, 3, 4]])

        assert_equal(tsatools.add_trend(self.arr_2d, trend='ct', prepend=True),
                     base[:, [0, 1, 3, 4]])

        assert_equal(
            tsatools.add_trend(self.arr_2d, trend='ctt', prepend=True), base)
예제 #9
0
파일: util.py 프로젝트: jbrockmendel/sm2
def get_var_endog(y, lags, trend='c', has_constant='skip'):
    """
    Make predictor matrix for VAR(p) process

    Z := (Z_0, ..., Z_T).T (T x Kp)
    Z_t = [1 y_t y_{t-1} ... y_{t - p + 1}] (Kp x 1)

    Ref: Lütkepohl p.70 (transposed)

    has_constant can be 'raise', 'add', or 'skip'. See add_constant.
    """
    nobs = len(y)
    # Ravel C order, need to put in descending order
    Z = np.array([y[t - lags: t][::-1].ravel() for t in range(lags, nobs)])

    # Add constant, trend, etc.
    if trend != 'nc':
        Z = tsatools.add_trend(Z, prepend=True, trend=trend,
                               has_constant=has_constant)
    return Z
예제 #10
0
 def test_unknown_trend(self):
     with pytest.raises(ValueError):
         tsatools.add_trend(x=self.arr_1d, trend='unknown')
예제 #11
0
 def test_dataframe_duplicate(self):
     df = pd.DataFrame(self.arr_2d, columns=['const', 'trend'])
     tsatools.add_trend(df, trend='ct')
     tsatools.add_trend(df, trend='ct', prepend=True)
예제 #12
0
def coint(y0,
          y1,
          trend='c',
          method='aeg',
          maxlag=None,
          autolag='aic',
          return_results=None):
    """Test for no-cointegration of a univariate equation

    The null hypothesis is no cointegration. Variables in y0 and y1 are
    assumed to be integrated of order 1, I(1).

    This uses the augmented Engle-Granger two-step cointegration test.
    Constant or trend is included in 1st stage regression, i.e. in
    cointegrating equation.

    **Warning:** The autolag default has changed compared to statsmodels 0.8.
    In 0.8 autolag was always None, no the keyword is used and defaults to
    'aic'. Use `autolag=None` to avoid the lag search.

    Parameters
    ----------
    y1 : array_like, 1d
        first element in cointegrating vector
    y2 : array_like
        remaining elements in cointegrating vector
    trend : str {'c', 'ct'}
        trend term included in regression for cointegrating equation
        * 'c' : constant
        * 'ct' : constant and linear trend
        * also available quadratic trend 'ctt', and no constant 'nc'

    method : string
        currently only 'aeg' for augmented Engle-Granger test is available.
        default might change.
    maxlag : None or int
        keyword for `adfuller`, largest or given number of lags
    autolag : string
        keyword for `adfuller`, lag selection criterion.
        * if None, then maxlag lags are used without lag search
        * if 'AIC' (default) or 'BIC', then the number of lags is chosen
          to minimize the corresponding information criterion
        * 't-stat' based choice of maxlag.  Starts with maxlag and drops a
          lag until the t-statistic on the last lag length is significant
          using a 5%-sized test

    return_results : bool
        for future compatibility, currently only tuple available.
        If True, then a results instance is returned. Otherwise, a tuple
        with the test outcome is returned.
        Set `return_results=False` to avoid future changes in return.

    Returns
    -------
    coint_t : float
        t-statistic of unit-root test on residuals
    pvalue : float
        MacKinnon's approximate, asymptotic p-value based on MacKinnon (1994)
    crit_value : dict
        Critical values for the test statistic at the 1 %, 5 %, and 10 %
        levels based on regression curve. This depends on the number of
        observations.

    Notes
    -----
    The Null hypothesis is that there is no cointegration, the alternative
    hypothesis is that there is cointegrating relationship. If the pvalue is
    small, below a critical size, then we can reject the hypothesis that there
    is no cointegrating relationship.

    P-values and critical values are obtained through regression surface
    approximation from MacKinnon 1994 and 2010.

    TODO: We could handle gaps in data by dropping rows with nans in the
    auxiliary regressions. Not implemented yet, currently assumes no nans
    and no gaps in time series.

    References
    ----------
    MacKinnon, J.G. 1994  "Approximate Asymptotic Distribution Functions for
        Unit-Root and Cointegration Tests." Journal of Business & Economics
        Statistics, 12.2, 167-76.
    MacKinnon, J.G. 2010.  "Critical Values for Cointegration Tests."
        Queen's University, Dept of Economics Working Papers 1227.
        http://ideas.repec.org/p/qed/wpaper/1227.html
    """
    trend = trend.lower()
    if trend not in ['c', 'nc', 'ct', 'ctt']:  # pragma: no cover
        raise ValueError("trend option %s not understood" % trend)

    y0 = np.asarray(y0)
    y1 = np.asarray(y1)
    if y1.ndim < 2:
        y1 = y1[:, None]
    nobs, k_vars = y1.shape
    k_vars += 1  # add 1 for y0

    if trend == 'nc':
        xx = y1
    else:
        xx = add_trend(y1, trend=trend, prepend=False)

    res_co = OLS(y0, xx).fit()

    if res_co.rsquared < 1 - np.sqrt(np.finfo(np.double).eps):
        res_adf = adfuller(res_co.resid,
                           maxlag=maxlag,
                           autolag=autolag,
                           regression='nc')
    else:
        warnings.warn(
            "y0 and y1 are perfectly colinear.  Cointegration test "
            "is not reliable in this case.", CollinearityWarning)
        # Edge case where series are too similar
        res_adf = (-np.inf, )

    # no constant or trend, see egranger in Stata and MacKinnon
    if trend == 'nc':
        crit = [np.nan] * 3  # 2010 critical values not available
    else:
        crit = mackinnoncrit(N=k_vars, regression=trend, nobs=nobs - 1)
        #  nobs - 1, the -1 is to match egranger in Stata, I don't know why.
        #  TODO: check nobs or df = nobs - k

    pval_asy = mackinnonp(res_adf[0], regression=trend, N=k_vars)
    return res_adf[0], pval_asy, crit
예제 #13
0
def adfuller(x,
             maxlag=None,
             regression="c",
             autolag='AIC',
             store=False,
             regresults=False):
    """
    Augmented Dickey-Fuller unit root test

    The Augmented Dickey-Fuller test can be used to test for a unit root in a
    univariate process in the presence of serial correlation.

    Parameters
    ----------
    x : array_like, 1d
        data series
    maxlag : int
        Maximum lag which is included in test, default 12*(nobs/100)^{1/4}
    regression : {'c','ct','ctt','nc'}
        Constant and trend order to include in regression

        * 'c' : constant only (default)
        * 'ct' : constant and trend
        * 'ctt' : constant, and linear and quadratic trend
        * 'nc' : no constant, no trend
    autolag : {'AIC', 'BIC', 't-stat', None}
        * if None, then maxlag lags are used
        * if 'AIC' (default) or 'BIC', then the number of lags is chosen
          to minimize the corresponding information criterion
        * 't-stat' based choice of maxlag.  Starts with maxlag and drops a
          lag until the t-statistic on the last lag length is significant
          using a 5%-sized test
    store : bool
        If True, then a result instance is returned additionally to
        the adf statistic. Default is False
    regresults : bool, optional
        If True, the full regression results are returned. Default is False

    Returns
    -------
    adf : float
        Test statistic
    pvalue : float
        MacKinnon's approximate p-value based on MacKinnon (1994, 2010)
    usedlag : int
        Number of lags used
    nobs : int
        Number of observations used for the ADF regression and calculation of
        the critical values
    critical values : dict
        Critical values for the test statistic at the 1 %, 5 %, and 10 %
        levels. Based on MacKinnon (2010)
    icbest : float
        The maximized information criterion if autolag is not None.
    resstore : ResultStore, optional
        A dummy class with results attached as attributes

    Notes
    -----
    The null hypothesis of the Augmented Dickey-Fuller is that there is a unit
    root, with the alternative that there is no unit root. If the pvalue is
    above a critical size, then we cannot reject that there is a unit root.

    The p-values are obtained through regression surface approximation from
    MacKinnon 1994, but using the updated 2010 tables. If the p-value is close
    to significant, then the critical values should be used to judge whether
    to reject the null.

    The autolag option and maxlag for it are described in Greene.

    Examples
    --------
    See example notebook

    References
    ----------
    .. [*] W. Green.  "Econometric Analysis," 5th ed., Pearson, 2003.

    .. [*] Hamilton, J.D.  "Time Series Analysis".  Princeton, 1994.

    .. [*] MacKinnon, J.G. 1994.  "Approximate asymptotic distribution
        functions for unit-root and cointegration tests.  `Journal of Business
        and Economic Statistics` 12, 167-76.

    .. [*] MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests."
        Queen's University, Dept of Economics, Working Papers.  Available at
        http://ideas.repec.org/p/qed/wpaper/1227.html
    """

    if regresults:
        store = True

    trenddict = {None: 'nc', 0: 'c', 1: 'ct', 2: 'ctt'}
    if regression is None or isinstance(regression, integer_types):
        regression = trenddict[regression]
    regression = regression.lower()
    if regression not in ['c', 'nc', 'ct', 'ctt']:  # pragma: no cover
        raise ValueError("regression option %s not understood" % regression)
    x = np.asarray(x)
    nobs = x.shape[0]

    if maxlag is None:
        # from Greene referencing Schwert 1989
        maxlag = int(np.ceil(12. * np.power(nobs / 100., 1 / 4.)))

    xdiff = np.diff(x)
    xdall = lagmat(xdiff[:, None], maxlag, trim='both', original='in')
    nobs = xdall.shape[0]  # pylint: disable=E1103

    xdall[:, 0] = x[-nobs - 1:-1]  # replace 0 xdiff with level of x
    xdshort = xdiff[-nobs:]

    if store:
        resstore = ResultsStore()
    if autolag:
        if regression != 'nc':
            fullRHS = add_trend(xdall, regression, prepend=True)
        else:
            fullRHS = xdall
        # add +1 for level
        startlag = fullRHS.shape[1] - xdall.shape[1] + 1
        # search for lag length with smallest information criteria
        # Note: use the same number of observations to have comparable IC
        # aic and bic: smaller is better

        icbest, bestlag, alres = _autolag(OLS,
                                          xdshort,
                                          fullRHS,
                                          startlag,
                                          maxlag,
                                          autolag,
                                          regresults=True)
        if regresults:
            resstore.autolag_results = alres

        bestlag -= startlag  # convert to lag not column index

        # rerun ols with best autolag
        xdall = lagmat(xdiff[:, None], bestlag, trim='both', original='in')
        nobs = xdall.shape[0]  # pylint: disable=E1103
        xdall[:, 0] = x[-nobs - 1:-1]  # replace 0 xdiff with level of x
        xdshort = xdiff[-nobs:]
        usedlag = bestlag
    else:
        usedlag = maxlag
        icbest = None

    if regression != 'nc':
        resols = OLS(xdshort, add_trend(xdall[:, :usedlag + 1],
                                        regression)).fit()
    else:
        resols = OLS(xdshort, xdall[:, :usedlag + 1]).fit()

    adfstat = resols.tvalues[0]
    # adfstat = (resols.params[0]-1.0)/resols.bse[0]
    # the "asymptotically correct" z statistic is obtained as
    # nobs/(1-np.sum(resols.params[1:-(trendorder+1)])) (resols.params[0] - 1)
    # I think this is the statistic that is used for series that are integrated
    # for orders higher than I(1), ie., not ADF but cointegration tests.

    # Get approx p-value and critical values
    pvalue = mackinnonp(adfstat, regression=regression, N=1)
    critvalues = mackinnoncrit(N=1, regression=regression, nobs=nobs)
    critvalues = {
        "1%": critvalues[0],
        "5%": critvalues[1],
        "10%": critvalues[2]
    }
    if store:
        resstore.resols = resols
        resstore.maxlag = maxlag
        resstore.usedlag = usedlag
        resstore.adfstat = adfstat
        resstore.critvalues = critvalues
        resstore.nobs = nobs
        resstore.H0 = ("The coefficient on the lagged level equals 1 - "
                       "unit root")
        resstore.HA = "The coefficient on the lagged level < 1 - stationary"
        resstore.icbest = icbest
        resstore._str = 'Augmented Dickey-Fuller Test Results'
        return adfstat, pvalue, critvalues, resstore
    else:
        if not autolag:
            return adfstat, pvalue, usedlag, nobs, critvalues
        else:
            return adfstat, pvalue, usedlag, nobs, critvalues, icbest