예제 #1
0
    def sma_test(self):

        """This function is used to check the function for calculating signal magnitude area"""
        
        sourcelist1 = [0.9398233871,0.9261432796,0.9179352151,0.9234072581,0.9097271505,0.9507674731,0.9398233871,0.9480314516,
                       0.9507674731,0.9343513441,0.9316153226,0.9288793011,0.9480314516,0.9343513441,0.9343513441,0.9234072581,
                       0.9343513441,0.9452954301,0.9425594086,0.9507674731,0.9398233871,0.9452954301,0.9261432796,0.9234072581,
                       0.9507674731,0.9370873656,0.9617115591,0.9480314516,0.9370873656,0.9343513441,0.9343513441,0.9398233871,
                       0.9343513441,0.9370873656,0.9234072581,0.9206712366,0.9316153226,0.9206712366,0.9206712366,0.9097271505,
                       0.9206712366,0.901519086,0.9042551075,0.9179352151,0.9261432796,0.9370873656,0.9425594086,0.9589755376,
                       0.9589755376,0.9535034946,0.9398233871,0.9343513441,0.9316153226,0.9370873656,0.9288793011,0.9699196237,
                       0.9726556452,0.9507674731,0.9452954301,0.9452954301,0.9562395161,0.9507674731,0.9726556452,0.9398233871,
                       0.9370873656,0.9452954301,0.9398233871,0.9206712366,0.9343513441,0.9261432796,0.9343513441,0.9370873656,
                       0.9425594086,0.9343513441,0.9398233871,0.9562395161,0.9452954301,0.9507674731,0.9507674731,0.9644475806,
                       0.9589755376,0.9452954301,0.9370873656,0.9343513441,0.9288793011,0.9288793011,0.9507674731,0.9452954301,
                       0.9617115591,0.9507674731,0.9562395161,0.9753916667,0.9562395161,0.9671836022,0.9343513441,0.9370873656,
                       0.9425594086,0.9507674731,0.9398233871,0.9562395161]

        sourceList2 = [0.1540502688,0.1331620968,0.1305510753,0.1279400538,0.1331620968,0.1253290323,0.1148849462,0.1383841398,
                       0.1331620968,0.1279400538,0.1357731183,0.1305510753,0.1462172043,0.1409951613,0.1201069892,0.1305510753,
                       0.1279400538,0.1227180108,0.1279400538,0.1174959677,0.1227180108,0.1357731183,0.1201069892,0.1174959677,
                       0.1279400538,0.1044408602,0.1201069892,0.1331620968,0.1122739247,0.1227180108,0.1122739247,0.1227180108,
                       0.1462172043,0.1357731183,0.1227180108,0.1253290323,0.1201069892,0.1122739247,0.1305510753,0.1070518817,
                       0.1096629032,0.1253290323,0.1201069892,0.1201069892,0.1409951613,0.1227180108,0.1462172043,0.1201069892,
                       0.1540502688,0.1148849462,0.1148849462,0.1227180108,0.1462172043,0.1409951613,0.1227180108,0.1096629032,
                       0.1070518817,0.1253290323,0.1122739247,0.1227180108,0.1227180108,0.1148849462,0.1148849462,0.1227180108,
                       0.1331620968,0.1018298387,0.1201069892,0.1227180108,0.1279400538,0.1122739247,0.1279400538,0.1148849462,
                       0.1096629032,0.1279400538,0.1122739247,0.1070518817,0.0992188172,0.0992188172,0.0887747312,0.1122739247,
                       0.1018298387,0.1201069892,0.0887747312,0.0835526882,0.0678865591,0.0835526882,0.1044408602,0.1044408602,
                       0.1122739247,0.1122739247,0.1174959677,0.1070518817,0.1018298387,0.1148849462,0.1227180108,0.1096629032,
                       0.1122739247,0.1122739247,0.1096629032,0.1122739247]

        sourceList3 = [-0.1714986559,-0.1741370968,-0.1926061828,-0.1583064516,-0.1820524194,-0.1794139785,-0.1794139785,
                       -0.1978830645,-0.1926061828,-0.1952446237,-0.2057983871,-0.1952446237,-0.1741370968,-0.1767755376,
                       -0.1820524194,-0.1899677419,-0.1688602151,-0.1767755376,-0.1926061828,-0.1767755376,-0.1846908602,
                       -0.2189905914,-0.1609448925,-0.1926061828,-0.1846908602,-0.1952446237,-0.1952446237,-0.1846908602,
                       -0.1873293011,-0.1767755376,-0.1820524194,-0.1846908602,-0.1846908602,-0.1794139785,-0.1794139785,
                       -0.1714986559,-0.1714986559,-0.1609448925,-0.1609448925,-0.1583064516,-0.1794139785,-0.1741370968,
                       -0.1662217742,-0.1609448925,-0.150391129,-0.1530295699,-0.1767755376,-0.1583064516,-0.1583064516,
                       -0.1767755376,-0.1899677419,-0.1978830645,-0.1873293011,-0.2242674731,-0.1556680108,-0.2005215054,
                       -0.1846908602,-0.1688602151,-0.1530295699,-0.1688602151,-0.1741370968,-0.1635833333,-0.1556680108,
                       -0.1609448925,-0.1635833333,-0.1530295699,-0.1530295699,-0.1609448925,-0.1635833333,-0.1451142473,
                       -0.1398373656,-0.1424758065,-0.1424758065,-0.131922043,-0.1371989247,-0.1530295699,-0.1556680108,
                       -0.1424758065,-0.1213682796,-0.1820524194,-0.1345604839,-0.1108145161,-0.1292836022,-0.1451142473,
                       -0.1530295699,-0.1556680108,-0.1424758065,-0.1424758065,-0.1662217742,-0.1556680108,-0.150391129,
                       -0.150391129,-0.1477526882,-0.1477526882,-0.1451142473,-0.1556680108,-0.1477526882,-0.1398373656,
                       -0.1530295699,-0.1477526882]

        target = 0.0122690393012

        result = smaFeat.smafeat(sourcelist1,sourceList2,sourceList3)

        self.assertAlmostEqual(result,target)
    def sma_test(self):

        sourcelist1 = [0.9398233871,0.9261432796,0.9179352151,0.9234072581,0.9097271505,0.9507674731,0.9398233871,0.9480314516,
                       0.9507674731,0.9343513441,0.9316153226,0.9288793011,0.9480314516,0.9343513441,0.9343513441,0.9234072581,
                       0.9343513441,0.9452954301,0.9425594086,0.9507674731,0.9398233871,0.9452954301,0.9261432796,0.9234072581,
                       0.9507674731,0.9370873656,0.9617115591,0.9480314516,0.9370873656,0.9343513441,0.9343513441,0.9398233871,
                       0.9343513441,0.9370873656,0.9234072581,0.9206712366,0.9316153226,0.9206712366,0.9206712366,0.9097271505,
                       0.9206712366,0.901519086,0.9042551075,0.9179352151,0.9261432796,0.9370873656,0.9425594086,0.9589755376,
                       0.9589755376,0.9535034946,0.9398233871,0.9343513441,0.9316153226,0.9370873656,0.9288793011,0.9699196237,
                       0.9726556452,0.9507674731,0.9452954301,0.9452954301,0.9562395161,0.9507674731,0.9726556452,0.9398233871,
                       0.9370873656,0.9452954301,0.9398233871,0.9206712366,0.9343513441,0.9261432796,0.9343513441,0.9370873656,
                       0.9425594086,0.9343513441,0.9398233871,0.9562395161,0.9452954301,0.9507674731,0.9507674731,0.9644475806,
                       0.9589755376,0.9452954301,0.9370873656,0.9343513441,0.9288793011,0.9288793011,0.9507674731,0.9452954301,
                       0.9617115591,0.9507674731,0.9562395161,0.9753916667,0.9562395161,0.9671836022,0.9343513441,0.9370873656,
                       0.9425594086,0.9507674731,0.9398233871,0.9562395161]

        sourceList2 = [0.1540502688,0.1331620968,0.1305510753,0.1279400538,0.1331620968,0.1253290323,0.1148849462,0.1383841398,
                       0.1331620968,0.1279400538,0.1357731183,0.1305510753,0.1462172043,0.1409951613,0.1201069892,0.1305510753,
                       0.1279400538,0.1227180108,0.1279400538,0.1174959677,0.1227180108,0.1357731183,0.1201069892,0.1174959677,
                       0.1279400538,0.1044408602,0.1201069892,0.1331620968,0.1122739247,0.1227180108,0.1122739247,0.1227180108,
                       0.1462172043,0.1357731183,0.1227180108,0.1253290323,0.1201069892,0.1122739247,0.1305510753,0.1070518817,
                       0.1096629032,0.1253290323,0.1201069892,0.1201069892,0.1409951613,0.1227180108,0.1462172043,0.1201069892,
                       0.1540502688,0.1148849462,0.1148849462,0.1227180108,0.1462172043,0.1409951613,0.1227180108,0.1096629032,
                       0.1070518817,0.1253290323,0.1122739247,0.1227180108,0.1227180108,0.1148849462,0.1148849462,0.1227180108,
                       0.1331620968,0.1018298387,0.1201069892,0.1227180108,0.1279400538,0.1122739247,0.1279400538,0.1148849462,
                       0.1096629032,0.1279400538,0.1122739247,0.1070518817,0.0992188172,0.0992188172,0.0887747312,0.1122739247,
                       0.1018298387,0.1201069892,0.0887747312,0.0835526882,0.0678865591,0.0835526882,0.1044408602,0.1044408602,
                       0.1122739247,0.1122739247,0.1174959677,0.1070518817,0.1018298387,0.1148849462,0.1227180108,0.1096629032,
                       0.1122739247,0.1122739247,0.1096629032,0.1122739247]

        sourceList3 = [-0.1714986559,-0.1741370968,-0.1926061828,-0.1583064516,-0.1820524194,-0.1794139785,-0.1794139785,
                       -0.1978830645,-0.1926061828,-0.1952446237,-0.2057983871,-0.1952446237,-0.1741370968,-0.1767755376,
                       -0.1820524194,-0.1899677419,-0.1688602151,-0.1767755376,-0.1926061828,-0.1767755376,-0.1846908602,
                       -0.2189905914,-0.1609448925,-0.1926061828,-0.1846908602,-0.1952446237,-0.1952446237,-0.1846908602,
                       -0.1873293011,-0.1767755376,-0.1820524194,-0.1846908602,-0.1846908602,-0.1794139785,-0.1794139785,
                       -0.1714986559,-0.1714986559,-0.1609448925,-0.1609448925,-0.1583064516,-0.1794139785,-0.1741370968,
                       -0.1662217742,-0.1609448925,-0.150391129,-0.1530295699,-0.1767755376,-0.1583064516,-0.1583064516,
                       -0.1767755376,-0.1899677419,-0.1978830645,-0.1873293011,-0.2242674731,-0.1556680108,-0.2005215054,
                       -0.1846908602,-0.1688602151,-0.1530295699,-0.1688602151,-0.1741370968,-0.1635833333,-0.1556680108,
                       -0.1609448925,-0.1635833333,-0.1530295699,-0.1530295699,-0.1609448925,-0.1635833333,-0.1451142473,
                       -0.1398373656,-0.1424758065,-0.1424758065,-0.131922043,-0.1371989247,-0.1530295699,-0.1556680108,
                       -0.1424758065,-0.1213682796,-0.1820524194,-0.1345604839,-0.1108145161,-0.1292836022,-0.1451142473,
                       -0.1530295699,-0.1556680108,-0.1424758065,-0.1424758065,-0.1662217742,-0.1556680108,-0.150391129,
                       -0.150391129,-0.1477526882,-0.1477526882,-0.1451142473,-0.1556680108,-0.1477526882,-0.1398373656,
                       -0.1530295699,-0.1477526882]

        target = 0.0122690393012

        result = smaFeat.smafeat(sourcelist1,sourceList2,sourceList3)

        self.assertAlmostEqual(result,target)
예제 #3
0
def calc_features(fullarray, micannot, samp_rate):

    #vect_c not used

    pre_win = [0, 100]  #pre-window 1s

    impact_max = [50, 150]  #1s
    imp_win = [50, 650]  # impact window 6s
    post_win = [300, 1200]  #9 s, based on the paper it should be 250-1200

    datAr = []  #for vector magnitude
    datXa = []  #for X values
    datYa = []  #for Y values
    datZa = []  #for Z values

    datXg = []
    datYg = []
    datZg = []

    for tempdata in fullarray:
        datAr.append(float(tempdata[6]))
        datXa.append(float(tempdata[0]))
        datYa.append(float(tempdata[1]))
        datZa.append(float(tempdata[2]))

        datXg.append(float(tempdata[3]))
        datYg.append(float(tempdata[4]))
        datZg.append(float(tempdata[5]))

    #if micannot == 2:
#        print "fall"
#else:
#    print "non-fall"
#plt.plot(datAr)
#plt.show()

#******************************************************************************************************************************
#minimum pre impact
    min_pre = min(datAr[pre_win[0]:pre_win[1]])

    #minimum value impact
    #min_imp = min(datAr[imp_win[0]:imp_win[1]])

    #minimum post imp
    #min_post = min(datAr[post_win[0]:post_win[1]])

    #******************************************************************************************************************************
    #maximum value pre-impact
    #max_pre = max(datAr[pre_win[0]:pre_win[1]])

    #maximum value impact
    max_imp = max(datAr[impact_max[0]:impact_max[1]])

    #maximum value post
    #max_post = max(datAr[post_win[0]:post_win[1]])
    #******************************************************************************************************************************
    #mean for pre-impact event
    meanList1 = datAr[pre_win[0]:pre_win[1]]
    meanVal1 = numpy.mean(meanList1)

    #******************************************************************************************************************************
    #mean for impact
    meanList2 = datAr[imp_win[0]:imp_win[1]]
    meanVal2 = numpy.mean(meanList2)

    #******************************************************************************************************************************
    #mean for post-impact
    meanList3 = datAr[post_win[0]:post_win[1]]
    meanVal3 = numpy.mean(meanList3)

    #******************************************************************************************************************************
    #Root mean square for pre-impact
    rmsList1 = datAr[pre_win[0]:pre_win[1]]
    rms1 = sqrt(mean(numpy.array(rmsList1)**2))

    #Root mean square for impact
    rmsList2 = datAr[imp_win[0]:imp_win[1]]
    rms2 = sqrt(mean(numpy.array(rmsList2)**2))

    #Root mean square for post-impact
    rmsList3 = datAr[post_win[0]:post_win[1]]
    rms3 = sqrt(mean(numpy.array(rmsList3)**2))

    #******************************************************************************************************************************
    #variance for pre-impact
    variance1 = numpy.var(datAr[pre_win[0]:pre_win[1]], ddof=1)

    #variance for impact
    variance2 = numpy.var(datAr[imp_win[0]:imp_win[1]], ddof=1)

    #variance for post-impact
    variance3 = numpy.var(datAr[post_win[0]:post_win[1]], ddof=1)

    #******************************************************************************************************************************
    #velocity in pre-impact
    velo1 = integrator.integrate(datAr[pre_win[0]:pre_win[1]])

    #velocity in impact
    velo2 = integrator.integrate(datAr[imp_win[0]:imp_win[1]])

    #velocity in post-impact
    velo3 = integrator.integrate(datAr[post_win[0]:post_win[1]])

    #******************************************************************************************************************************
    #energy in pre-impact
    win1x = datXa[pre_win[0]:pre_win[1]]
    win1y = datYa[pre_win[0]:pre_win[1]]
    win1z = datZa[pre_win[0]:pre_win[1]]
    energy1 = energyFeat.energyCalc(win1x, win1y, win1z)

    #energy in impact
    win2x = datXa[imp_win[0]:imp_win[1]]
    win2y = datYa[imp_win[0]:imp_win[1]]
    win2z = datZa[imp_win[0]:imp_win[1]]
    energy2 = energyFeat.energyCalc(win2x, win2y, win2z)

    #energy in post-impact
    win3x = datXa[post_win[0]:post_win[1]]
    win3y = datYa[post_win[0]:post_win[1]]
    win3z = datZa[post_win[0]:post_win[1]]
    energy3 = energyFeat.energyCalc(win3x, win3y, win3z)

    #******************************************************************************************************************************
    #signal magnitude are in pre-impact
    sma1 = smaFeat.smafeat(datXa[pre_win[0]:pre_win[1]],
                           datYa[pre_win[0]:pre_win[1]],
                           datZa[pre_win[0]:pre_win[1]])

    #signal magnitude are in impact
    sma2 = smaFeat.smafeat(datXa[imp_win[0]:imp_win[1]],
                           datYa[imp_win[0]:imp_win[1]],
                           datZa[imp_win[0]:imp_win[1]])

    #signal magnitude are in pre-impact
    sma3 = smaFeat.smafeat(datXa[post_win[0]:post_win[1]],
                           datYa[post_win[0]:post_win[1]],
                           datZa[post_win[0]:post_win[1]])
    #******************************************************************************************************************************
    #exponential moving average in pre-impact
    ewma1 = emafit.ema(datAr[pre_win[0]:pre_win[1]])

    #exponential moving average in impact
    ewma2 = emafit.ema(datAr[imp_win[0]:imp_win[1]])

    #exponential moving average in post-impact
    ewma3 = emafit.ema(datAr[post_win[0]:post_win[1]])

    #******************************************************************************************************************************

    datfeat = [
        min_pre, max_imp, meanVal1, meanVal2, meanVal3, rms1, rms2, rms3,
        variance1, variance2, variance3, velo1, velo2, velo3, energy1, energy2,
        energy3, sma1, sma2, sma3, ewma1, ewma2, ewma3, micannot
    ]

    return datfeat
예제 #4
0
def featurescom (fullarray, micannot,act_state):

    samp_rate = source_var.sampling_rate()
    pre_win = [0, samp_rate] #pre-window
    imp_win = [(samp_rate/2)-1, int(6.5 * samp_rate)] # impact window
    post_win = [int((2.5 * samp_rate))-1, 12 * samp_rate] #post impact window

    max_win = [(samp_rate/2)-1, int(1.5 * samp_rate)] # window for search max value
    tilt_sample_impact = [(2*samp_rate)-1, 3*samp_rate]
    tilt_sample_post = [(3 * samp_rate) - 1, 12 * samp_rate] # window for tilt-angle

    datAr = [] #for vector magnitude
    datXa= [] #for X values
    datYa= [] #for Y values
    datZa= [] #for Z values

    datXg=[]
    datYg=[]
    datZg=[]

    for tempdata in fullarray:
        datAr.append(float(tempdata[6]))
        datXa.append(float(tempdata[0]))
        datYa.append(float(tempdata[1]))
        datZa.append(float(tempdata[2]))

        datXg.append(float(tempdata[3]))
        datYg.append(float(tempdata[4]))
        datZg.append(float(tempdata[5]))

    #******************************************************************************************************************************
    #minimum value feature
    minVal = min(datAr[pre_win[0]:pre_win[1]])

    #******************************************************************************************************************************
    #maximum value feature
    maxVal = max(datAr[max_win[0]:max_win[1]])

    #******************************************************************************************************************************
    #mean for pre-impact event
    meanList1 = datAr[pre_win[0]:pre_win[1]]
    meanVal1 = numpy.mean(meanList1)

    #******************************************************************************************************************************
    #mean for impact
    meanList2 = datAr[imp_win[0]:imp_win[1]]
    meanVal2 = numpy.mean(meanList2)

    #******************************************************************************************************************************
    #mean for post-impact
    meanList3 = datAr[post_win[0]:post_win[1]]
    meanVal3 = numpy.mean(meanList3)

    #******************************************************************************************************************************
    #Root mean square for pre-impact
    rmsList1 = datAr[pre_win[0]:pre_win[1]]
    rms1 = sqrt(mean(numpy.array(rmsList1)**2))

    #Root mean square for impact
    rmsList2 = datAr[imp_win[0]:imp_win[1]]
    rms2 = sqrt(mean(numpy.array(rmsList2)**2))

    #Root mean square for post-impact
    rmsList3 = datAr[post_win[0]:post_win[1]]
    rms3 = sqrt(mean(numpy.array(rmsList3)**2))

    #******************************************************************************************************************************
    #variance for pre-impact
    variance1 = numpy.var(datAr[pre_win[0]:pre_win[1]],ddof=1)

    #variance for impact
    variance2 = numpy.var(datAr[imp_win[0]:imp_win[1]],ddof=1)

    #variance for post-impact
    variance3 = numpy.var(datAr[post_win[0]:post_win[1]],ddof=1)

    #******************************************************************************************************************************
    #velocity in pre-impact
    velo1 = integrator.integrate(datAr[pre_win[0]:pre_win[1]])

    #velocity in impact
    velo2 = integrator.integrate(datAr[imp_win[0]:imp_win[1]])

    #velocity in post-impact
    velo3 = integrator.integrate(datAr[post_win[0]:post_win[1]])

    #******************************************************************************************************************************
    #energy in pre-impact
    win1x = datXa[pre_win[0]:pre_win[1]]
    win1y = datYa[pre_win[0]:pre_win[1]]
    win1z = datZa[pre_win[0]:pre_win[1]]
    energy1 = energyFeat.energyCalc(win1x,win1y,win1z)

    #energy in impact
    win2x = datXa[imp_win[0]:imp_win[1]]
    win2y = datYa[imp_win[0]:imp_win[1]]
    win2z = datZa[imp_win[0]:imp_win[1]]
    energy2 = energyFeat.energyCalc(win2x,win2y,win2z)

     #energy in post-impact
    win3x = datXa[post_win[0]:post_win[1]]
    win3y = datYa[post_win[0]:post_win[1]]
    win3z = datZa[post_win[0]:post_win[1]]
    energy3 = energyFeat.energyCalc(win3x,win3y,win3z)

    #******************************************************************************************************************************
    #signal magnitude are in pre-impact
    sma1 = smaFeat.smafeat(datXa[pre_win[0]:pre_win[1]],datYa[pre_win[0]:pre_win[1]],datZa[pre_win[0]:pre_win[1]])

    #signal magnitude are in impact
    sma2 = smaFeat.smafeat(datXa[imp_win[0]:imp_win[1]],datYa[imp_win[0]:imp_win[1]],datZa[imp_win[0]:imp_win[1]])

    #signal magnitude are in pre-impact
    sma3 = smaFeat.smafeat(datXa[post_win[0]:post_win[1]],datYa[post_win[0]:post_win[1]],datZa[post_win[0]:post_win[1]])
    #******************************************************************************************************************************
    #exponential moving average in pre-impact
    ewma1 = emafit.ema(datAr[pre_win[0]:pre_win[1]])

    #exponential moving average in impact
    ewma2 = emafit.ema(datAr[imp_win[0]:imp_win[1]])

    #exponential moving average in post-impact
    ewma3 = emafit.ema(datAr[post_win[0]:post_win[1]])

    #******************************************************************************************************************************
    #Tilt Angle in pre-impact
    all_angle_1 = mytilt.mytilt(datXa[pre_win[0]:pre_win[1]],datYa[pre_win[0]:pre_win[1]],datZa[pre_win[0]:pre_win[1]],
                                datXg[pre_win[0]:pre_win[1]],datYg[pre_win[0]:pre_win[1]],datZg[pre_win[0]:pre_win[1]])
    angle_y_1 = numpy.max(numpy.abs(numpy.array(all_angle_1[0])))
    angle_z_1 = numpy.max(numpy.abs(numpy.array(all_angle_1[1])))

    #Tilt Angle in impact
    all_angle_2 = mytilt.mytilt(datXa[tilt_sample_impact[0]:tilt_sample_impact[1]],datYa[tilt_sample_impact[0]:tilt_sample_impact[1]],
                               datZa[tilt_sample_impact[0]:tilt_sample_impact[1]],datXg[tilt_sample_impact[0]:tilt_sample_impact[1]],
                               datYg[tilt_sample_impact[0]:tilt_sample_impact[1]],datZg[tilt_sample_impact[0]:tilt_sample_impact[1]])
    angle_y_2 = numpy.max(numpy.abs(numpy.array(all_angle_2[0])))
    angle_z_2 = numpy.max(numpy.abs(numpy.array(all_angle_2[1])))

    #Tilt Angle in post-impact
    all_angle_3 = mytilt.mytilt(datXa[tilt_sample_post[0]:tilt_sample_post[1]],datYa[tilt_sample_post[0]:tilt_sample_post[1]],
                               datZa[tilt_sample_post[0]:tilt_sample_post[1]],datXg[tilt_sample_post[0]:tilt_sample_post[1]],
                              datYg[tilt_sample_post[0]:tilt_sample_post[1]],datZg[tilt_sample_post[0]:tilt_sample_post[1]])
    angle_y_3 = numpy.max(numpy.abs(numpy.array(all_angle_3[0])))
    angle_z_3 = numpy.max(numpy.abs(numpy.array(all_angle_3[1])))


    #******************************************************************************************************************************

    annot = micannot

    #datfeat = [minVal, maxVal, meanVal1, meanVal2, meanVal3, rms1, rms2, rms3, variance1, variance2, variance3, velo1,
    #          velo2, velo3, energy1, energy2, energy3, sma1, sma2, sma3, ewma1, ewma2, ewma3, act_state, annot]
    datfeat = [minVal, maxVal, meanVal1, meanVal2, meanVal3, rms1, rms2, rms3, variance1, variance2, variance3, velo1,
               velo2, velo3, energy1, energy2, energy3, sma1, sma2, sma3, ewma1, ewma2, ewma3, angle_y_1, angle_z_1,
               angle_y_2, angle_z_2,angle_y_3,angle_z_3,act_state, annot]

    return datfeat