def test_init_EIPS_as_arguments(self): for objective in ['runtime', 'quality']: self.scenario.run_obj = objective types, bounds = get_types(self.scenario.cs, None) umrfwi = UncorrelatedMultiObjectiveRandomForestWithInstances( ['cost', 'runtime'], types, bounds) eips = EIPS(umrfwi) rh2EPM = RunHistory2EPM4EIPS(self.scenario, 2) smbo = SMAC(self.scenario, model=umrfwi, acquisition_function=eips, runhistory2epm=rh2EPM).solver self.assertIs(umrfwi, smbo.model) self.assertIs(eips, smbo.acquisition_func) self.assertIs(rh2EPM, smbo.rh2EPM)
def test_eips(self): scenario = Scenario({'cs': test_helpers.get_branin_config_space(), 'run_obj': 'quality', 'deterministic': True, 'output_dir': ''}) types = get_types(scenario.cs, None) umrfwi = UncorrelatedMultiObjectiveRandomForestWithInstances( ['cost', 'runtime'], types) eips = EIPS(umrfwi) rh2EPM = RunHistory2EPM4EIPS(scenario, 2) taf = ExecuteTAFunc(test_function) smbo = SMBO(scenario, model=umrfwi, acquisition_function=eips, runhistory2epm=rh2EPM, tae_runner=taf, random_configuration_chooser=ChooserNoCoolDown(2.0)) smbo.run(5) print(smbo.incumbent) raise ValueError()
def get_eips_object_callback( scenario_dict, seed, ta, backend, metalearning_configurations, runhistory, ): scenario_dict['input_psmac_dirs'] = backend.get_smac_output_glob() scenario = Scenario(scenario_dict) rh2EPM = RunHistory2EPM4EIPS( num_params=len(scenario.cs.get_hyperparameters()), scenario=scenario, success_states=[ StatusType.SUCCESS, StatusType.MEMOUT, StatusType.TIMEOUT, StatusType.CRASHED ], impute_censored_data=False, impute_state=None ) types, bounds = get_types(scenario.cs, scenario.feature_array) model = UncorrelatedMultiObjectiveRandomForestWithInstances( ['cost', 'runtime'], types=types, bounds=bounds, instance_features=scenario.feature_array, rf_kwargs={'seed': 1,}, ) acquisition_function = EIPS(model) return SMAC( runhistory=runhistory, scenario=scenario, rng=seed, tae_runner=ta, runhistory2epm=rh2EPM, model=model, acquisition_function=acquisition_function, run_id=seed, )
def setUp(self): self.model = MockModelDual() self.ei = EIPS(self.model)
def build_pc_smbo(self, tae_runner, stats, scenario, runhistory, aggregate_func, acq_func_name, model_target_names, logging_directory, double_intensification=False, constant_pipeline_steps=None, variable_pipeline_steps=None, cached_pipeline_steps=None, seed=None, intensification_instances=None, num_marginalized_configurations_by_random_search=20, num_configs_for_marginalization=40, random_splitting_number=5, random_splitting_enabled=False): # Build intensifier rng = np.random.RandomState(seed) traj_logger = TrajLogger(logging_directory, stats) intensifier = Intensifier(tae_runner=tae_runner, stats=stats, traj_logger=traj_logger, rng=rng, cutoff=scenario.cutoff, deterministic=scenario.deterministic, run_obj_time=scenario.run_obj == "runtime", run_limit=scenario.ta_run_limit, instances=intensification_instances, maxR=len(intensification_instances)) # Build model types, bounds = get_types(scenario.cs, scenario.feature_array) #types = get_types(scenario.cs) if len(model_target_names) > 1: # model_target_names = ['cost','time'] model = UncorrelatedMultiObjectiveRandomForestWithInstances( target_names=model_target_names, bounds=bounds, types=types) # UncorrelatedMultiObjectiveRandomForestWithInstances(target_names=model_target_names, # types=types) elif len(model_target_names) == 1: model = RandomForestWithInstances(types=types, bounds=bounds) else: model = RandomEPM(rng=rng) # model = RandomForestWithInstances(types=types) # Build acquisition function, runhistory2epm and local search num_params = len(scenario.cs.get_hyperparameters()) if acq_func_name in ["ei", "pc-ei"]: acquisition_func = EI(model) acq_func_wrapper = PCAquisitionFunctionWrapper( acquisition_func=acquisition_func, config_space=scenario.cs, runhistory=runhistory, constant_pipeline_steps=constant_pipeline_steps, variable_pipeline_steps=variable_pipeline_steps) runhistory2epm = RunHistory2EPM4Cost( scenario, num_params, success_states=[StatusType.SUCCESS]) local_search = LocalSearch(acquisition_function=acq_func_wrapper, config_space=scenario.cs) select_configuration = SelectConfigurations( scenario=scenario, stats=stats, runhistory=runhistory, model=model, acq_optimizer=local_search, acquisition_func=acq_func_wrapper, rng=rng, constant_pipeline_steps=constant_pipeline_steps, variable_pipeline_steps=variable_pipeline_steps) elif acq_func_name in ["m-ei", "pc-m-ei"]: #acquisition_func = MEI(model) acquisition_func = EI(model) acq_func_wrapper = PCAquisitionFunctionWrapper( acquisition_func=acquisition_func, config_space=scenario.cs, runhistory=runhistory, constant_pipeline_steps=constant_pipeline_steps, variable_pipeline_steps=variable_pipeline_steps) runhistory2epm = RunHistory2EPM4Cost( scenario, num_params, success_states=[StatusType.SUCCESS]) local_search = LocalSearch(acquisition_function=acq_func_wrapper, config_space=scenario.cs) # TODO: num_configs_for_marginalization select_configuration = SelectConfigurationsWithMarginalization( scenario=scenario, stats=stats, runhistory=runhistory, model=model, acq_optimizer=local_search, acquisition_func=acq_func_wrapper, rng=rng, constant_pipeline_steps=constant_pipeline_steps, variable_pipeline_steps=variable_pipeline_steps, num_marginalized_configurations_by_random_search= num_marginalized_configurations_by_random_search, num_configs_for_marginalization=num_configs_for_marginalization ) elif acq_func_name in ['eips', 'pc-eips']: acquisition_func = EIPS(model) acq_func_wrapper = PCAquisitionFunctionWrapper( acquisition_func=acquisition_func, config_space=scenario.cs, runhistory=runhistory, constant_pipeline_steps=constant_pipeline_steps, variable_pipeline_steps=variable_pipeline_steps) runhistory2epm = RunHistory2EPM4EIPS( scenario, num_params, success_states=[StatusType.SUCCESS]) local_search = LocalSearch(acquisition_function=acq_func_wrapper, config_space=scenario.cs) select_configuration = SelectConfigurations( scenario=scenario, stats=stats, runhistory=runhistory, model=model, acq_optimizer=local_search, acquisition_func=acq_func_wrapper, rng=rng, constant_pipeline_steps=constant_pipeline_steps, variable_pipeline_steps=variable_pipeline_steps) elif acq_func_name in ["m-eips", "pc-m-eips"]: acquisition_func = EIPS(model) acq_func_wrapper = PCAquisitionFunctionWrapper( acquisition_func=acquisition_func, config_space=scenario.cs, runhistory=runhistory, constant_pipeline_steps=constant_pipeline_steps, variable_pipeline_steps=variable_pipeline_steps) runhistory2epm = RunHistory2EPM4EIPS( scenario, num_params, success_states=[StatusType.SUCCESS]) local_search = LocalSearch(acquisition_function=acq_func_wrapper, config_space=scenario.cs) # TODO: num_configs_for_marginalization select_configuration = SelectConfigurationsWithMarginalization( scenario=scenario, stats=stats, runhistory=runhistory, model=model, acq_optimizer=local_search, acquisition_func=acq_func_wrapper, rng=rng, constant_pipeline_steps=constant_pipeline_steps, variable_pipeline_steps=variable_pipeline_steps, num_marginalized_configurations_by_random_search= num_marginalized_configurations_by_random_search, num_configs_for_marginalization=num_configs_for_marginalization ) elif acq_func_name == 'pceips': acquisition_func = PCEIPS(model) acq_func_wrapper = PCAquisitionFunctionWrapperWithCachingReduction( acquisition_func=acquisition_func, config_space=scenario.cs, runhistory=runhistory, constant_pipeline_steps=constant_pipeline_steps, variable_pipeline_steps=variable_pipeline_steps, cached_pipeline_steps=cached_pipeline_steps) runhistory2epm = RunHistory2EPM4EIPS( scenario, num_params, success_states=[StatusType.SUCCESS]) local_search = LocalSearch(acquisition_function=acq_func_wrapper, config_space=scenario.cs) if constant_pipeline_steps == None or variable_pipeline_steps == None or cached_pipeline_steps == None: raise ValueError( "Constant_pipeline_steps and variable pipeline steps should not be none\ when using PCEIPS") select_configuration = SelectConfigurations( scenario=scenario, stats=stats, runhistory=runhistory, model=model, acq_optimizer=local_search, acquisition_func=acq_func_wrapper, rng=rng, constant_pipeline_steps=constant_pipeline_steps, variable_pipeline_steps=variable_pipeline_steps) elif acq_func_name == 'pc-m-pceips': acquisition_func = PCEIPS(model) acq_func_wrapper = PCAquisitionFunctionWrapperWithCachingReduction( acquisition_func=acquisition_func, config_space=scenario.cs, runhistory=runhistory, constant_pipeline_steps=constant_pipeline_steps, variable_pipeline_steps=variable_pipeline_steps, cached_pipeline_steps=cached_pipeline_steps) runhistory2epm = RunHistory2EPM4EIPS( scenario, num_params, success_states=[StatusType.SUCCESS]) local_search = LocalSearch(acquisition_function=acq_func_wrapper, config_space=scenario.cs) if constant_pipeline_steps == None or variable_pipeline_steps == None or cached_pipeline_steps == None: raise ValueError( "Constant_pipeline_steps and variable pipeline steps should not be none\ when using PCEIPS") select_configuration = SelectConfigurationsWithMarginalization( scenario=scenario, stats=stats, runhistory=runhistory, model=model, acq_optimizer=local_search, acquisition_func=acq_func_wrapper, rng=rng, constant_pipeline_steps=constant_pipeline_steps, variable_pipeline_steps=variable_pipeline_steps, num_marginalized_configurations_by_random_search= num_marginalized_configurations_by_random_search, num_configs_for_marginalization=num_configs_for_marginalization ) elif acq_func_name == "roar": runhistory2epm = RunHistory2EPM4Cost( scenario, num_params, success_states=[StatusType.SUCCESS]) select_configuration = SelectConfigurationsRandom( scenario=scenario) elif acq_func_name == "pc-roar-mrs": runhistory2epm = RunHistory2EPM4Cost( scenario, num_params, success_states=[StatusType.SUCCESS]) select_configuration = SelectConfigurationsMRS( scenario=scenario, constant_pipeline_steps=constant_pipeline_steps, variable_pipeline_steps=variable_pipeline_steps, splitting_number=random_splitting_number, random_splitting_enabled=random_splitting_enabled) elif acq_func_name == "pc-roar-sigmoid-rs": runhistory2epm = RunHistory2EPM4Cost( scenario, num_params, success_states=[StatusType.SUCCESS]) select_configuration = SelectConfigurationsSigmoidRS( scenario=scenario, constant_pipeline_steps=constant_pipeline_steps, variable_pipeline_steps=variable_pipeline_steps, fraction=random_splitting_number) else: # Not a valid acquisition function raise ValueError("The provided acquisition function is not valid") # Build initial design # initial_design = RandomConfiguration(tae_runner=tae_runner, # scenario=scenario, # stats=stats, # traj_logger=traj_logger, # rng=rng) initial_configs = scenario.cs.sample_configuration(size=2) for config in initial_configs: config._populate_values() initial_design = MultiConfigInitialDesign( tae_runner=tae_runner, scenario=scenario, stats=stats, traj_logger=traj_logger, runhistory=runhistory, rng=rng, configs=initial_configs, intensifier=intensifier, aggregate_func=aggregate_func) # run id num_run = rng.randint(1234567980) # Build pc_smbo if acq_func_name not in ['pc-roar-sigmoid-rs']: smbo = PCSMBO(scenario=scenario, stats=stats, initial_design=initial_design, runhistory=runhistory, runhistory2epm=runhistory2epm, intensifier=intensifier, aggregate_func=aggregate_func, num_run=num_run, model=model, rng=rng, select_configuration=select_configuration, double_intensification=double_intensification) else: smbo = PCSMBOSigmoidRandomSearch( scenario=scenario, stats=stats, initial_design=initial_design, runhistory=runhistory, runhistory2epm=runhistory2epm, intensifier=intensifier, aggregate_func=aggregate_func, num_run=num_run, model=model, rng=rng, select_configuration=select_configuration) return smbo
def run_smbo(self): self.watcher.start_task('SMBO') # == first things first: load the datamanager self.reset_data_manager() # == Initialize non-SMBO stuff # first create a scenario seed = self.seed self.config_space.seed(seed) num_params = len(self.config_space.get_hyperparameters()) # allocate a run history num_run = self.start_num_run # Initialize some SMAC dependencies runhistory = RunHistory(aggregate_func=average_cost) # meta_runhistory = RunHistory(aggregate_func=average_cost) # meta_runs_dataset_indices = {} # == METALEARNING suggestions # we start by evaluating the defaults on the full dataset again # and add the suggestions from metalearning behind it if self.num_metalearning_cfgs > 0: if self.metadata_directory is None: metalearning_directory = os.path.dirname( autosklearn.metalearning.__file__) # There is no multilabel data in OpenML if self.task == MULTILABEL_CLASSIFICATION: meta_task = BINARY_CLASSIFICATION else: meta_task = self.task metadata_directory = os.path.join( metalearning_directory, 'files', '%s_%s_%s' % (self.metric, TASK_TYPES_TO_STRING[meta_task], 'sparse' if self.datamanager.info['is_sparse'] else 'dense')) self.metadata_directory = metadata_directory if os.path.exists(self.metadata_directory): self.logger.info('Metadata directory: %s', self.metadata_directory) meta_base = MetaBase(self.config_space, self.metadata_directory) try: meta_base.remove_dataset(self.dataset_name) except: pass metafeature_calculation_time_limit = int( self.total_walltime_limit / 4) metafeature_calculation_start_time = time.time() meta_features = self._calculate_metafeatures_with_limits( metafeature_calculation_time_limit) metafeature_calculation_end_time = time.time() metafeature_calculation_time_limit = \ metafeature_calculation_time_limit - ( metafeature_calculation_end_time - metafeature_calculation_start_time) if metafeature_calculation_time_limit < 1: self.logger.warning( 'Time limit for metafeature calculation less ' 'than 1 seconds (%f). Skipping calculation ' 'of metafeatures for encoded dataset.', metafeature_calculation_time_limit) meta_features_encoded = None else: with warnings.catch_warnings(): warnings.showwarning = self._send_warnings_to_log self.datamanager.perform1HotEncoding() meta_features_encoded = \ self._calculate_metafeatures_encoded_with_limits( metafeature_calculation_time_limit) # In case there is a problem calculating the encoded meta-features if meta_features is None: if meta_features_encoded is not None: meta_features = meta_features_encoded else: if meta_features_encoded is not None: meta_features.metafeature_values.update( meta_features_encoded.metafeature_values) if meta_features is not None: meta_base.add_dataset(self.dataset_name, meta_features) # Do mean imputation of the meta-features - should be done specific # for each prediction model! all_metafeatures = meta_base.get_metafeatures( features=list(meta_features.keys())) all_metafeatures.fillna(all_metafeatures.mean(), inplace=True) with warnings.catch_warnings(): warnings.showwarning = self._send_warnings_to_log metalearning_configurations = self.collect_metalearning_suggestions( meta_base) if metalearning_configurations is None: metalearning_configurations = [] self.reset_data_manager() self.logger.info('%s', meta_features) # Convert meta-features into a dictionary because the scenario # expects a dictionary meta_features_dict = {} for dataset, series in all_metafeatures.iterrows(): meta_features_dict[dataset] = series.values meta_features_list = [] for meta_feature_name in all_metafeatures.columns: meta_features_list.append( meta_features[meta_feature_name].value) meta_features_list = np.array(meta_features_list).reshape( (1, -1)) self.logger.info(list(meta_features_dict.keys())) # meta_runs = meta_base.get_all_runs(METRIC_TO_STRING[self.metric]) # meta_runs_index = 0 # try: # meta_durations = meta_base.get_all_runs('runtime') # read_runtime_data = True # except KeyError: # read_runtime_data = False # self.logger.critical('Cannot read runtime data.') # if self.acquisition_function == 'EIPS': # self.logger.critical('Reverting to acquisition function EI!') # self.acquisition_function = 'EI' # for meta_dataset in meta_runs.index: # meta_dataset_start_index = meta_runs_index # for meta_configuration in meta_runs.columns: # if np.isfinite(meta_runs.loc[meta_dataset, meta_configuration]): # try: # config = meta_base.get_configuration_from_algorithm_index( # meta_configuration) # cost = meta_runs.loc[meta_dataset, meta_configuration] # if read_runtime_data: # runtime = meta_durations.loc[meta_dataset, # meta_configuration] # else: # runtime = 1 # # TODO read out other status types! # meta_runhistory.add(config, cost, runtime, # StatusType.SUCCESS, # instance_id=meta_dataset) # meta_runs_index += 1 # except: # # TODO maybe add warning # pass # # meta_runs_dataset_indices[meta_dataset] = ( # meta_dataset_start_index, meta_runs_index) else: meta_features = None self.logger.warning('Could not find meta-data directory %s' % metadata_directory) else: meta_features = None if meta_features is None: if self.acquisition_function == 'EIPS': self.logger.critical('Reverting to acquisition function EI!') self.acquisition_function = 'EI' meta_features_list = [] meta_features_dict = {} metalearning_configurations = [] if self.resampling_strategy in [ 'partial-cv', 'partial-cv-iterative-fit' ]: num_folds = self.resampling_strategy_args['folds'] instances = [[ json.dumps({ 'task_id': self.dataset_name, 'fold': fold_number }) ] for fold_number in range(num_folds)] else: instances = [[json.dumps({'task_id': self.dataset_name})]] startup_time = self.watcher.wall_elapsed(self.dataset_name) total_walltime_limit = self.total_walltime_limit - startup_time - 5 scenario_dict = { 'cs': self.config_space, 'cutoff-time': self.func_eval_time_limit, 'memory-limit': self.memory_limit, 'wallclock-limit': total_walltime_limit, 'output-dir': self.backend.get_smac_output_directory(self.seed), 'shared-model': self.shared_mode, 'run-obj': 'quality', 'deterministic': 'true', 'instances': instances } if self.configuration_mode == 'RANDOM': scenario_dict['minR'] = len( instances) if instances is not None else 1 scenario_dict['initial_incumbent'] = 'RANDOM' self.scenario = Scenario(scenario_dict) # TODO rebuild target algorithm to be it's own target algorithm # evaluator, which takes into account that a run can be killed prior # to the model being fully fitted; thus putting intermediate results # into a queue and querying them once the time is over exclude = dict() include = dict() if self.include_preprocessors is not None and \ self.exclude_preprocessors is not None: raise ValueError('Cannot specify include_preprocessors and ' 'exclude_preprocessors.') elif self.include_preprocessors is not None: include['preprocessor'] = self.include_preprocessors elif self.exclude_preprocessors is not None: exclude['preprocessor'] = self.exclude_preprocessors if self.include_estimators is not None and \ self.exclude_preprocessors is not None: raise ValueError('Cannot specify include_estimators and ' 'exclude_estimators.') elif self.include_estimators is not None: if self.task in CLASSIFICATION_TASKS: include['classifier'] = self.include_estimators elif self.task in REGRESSION_TASKS: include['regressor'] = self.include_estimators else: raise ValueError(self.task) elif self.exclude_estimators is not None: if self.task in CLASSIFICATION_TASKS: exclude['classifier'] = self.exclude_estimators elif self.task in REGRESSION_TASKS: exclude['regressor'] = self.exclude_estimators else: raise ValueError(self.task) ta = ExecuteTaFuncWithQueue( backend=self.backend, autosklearn_seed=seed, resampling_strategy=self.resampling_strategy, initial_num_run=num_run, logger=self.logger, include=include, exclude=exclude, metric=self.metric, memory_limit=self.memory_limit, disable_file_output=self.disable_file_output, **self.resampling_strategy_args) types, bounds = get_types(self.config_space, self.scenario.feature_array) # TODO extract generation of SMAC object into it's own function for # testing if self.acquisition_function == 'EI': model = RandomForestWithInstances( types=types, bounds=bounds, #instance_features=meta_features_list, seed=1, num_trees=10) rh2EPM = RunHistory2EPM4Cost(num_params=num_params, scenario=self.scenario, success_states=[ StatusType.SUCCESS, StatusType.MEMOUT, StatusType.TIMEOUT ], impute_censored_data=False, impute_state=None) _smac_arguments = dict(scenario=self.scenario, model=model, rng=seed, runhistory2epm=rh2EPM, tae_runner=ta, runhistory=runhistory) elif self.acquisition_function == 'EIPS': rh2EPM = RunHistory2EPM4EIPS(num_params=num_params, scenario=self.scenario, success_states=[ StatusType.SUCCESS, StatusType.MEMOUT, StatusType.TIMEOUT ], impute_censored_data=False, impute_state=None) model = UncorrelatedMultiObjectiveRandomForestWithInstances( ['cost', 'runtime'], types=types, bounds=bounds, num_trees=10, instance_features=meta_features_list, seed=1) acquisition_function = EIPS(model) _smac_arguments = dict(scenario=self.scenario, model=model, rng=seed, tae_runner=ta, runhistory2epm=rh2EPM, runhistory=runhistory, acquisition_function=acquisition_function) else: raise ValueError('Unknown acquisition function value %s!' % self.acquisition_function) if self.configuration_mode == 'SMAC': smac = SMAC(**_smac_arguments) elif self.configuration_mode in ['ROAR', 'RANDOM']: for not_in_roar in ['runhistory2epm', 'model']: if not_in_roar in _smac_arguments: del _smac_arguments[not_in_roar] smac = ROAR(**_smac_arguments) else: raise ValueError(self.configuration_mode) # Build a runtime model # runtime_rf = RandomForestWithInstances(types, # instance_features=meta_features_list, # seed=1, num_trees=10) # runtime_rh2EPM = RunHistory2EPM4EIPS(num_params=num_params, # scenario=self.scenario, # success_states=None, # impute_censored_data=False, # impute_state=None) # X_runtime, y_runtime = runtime_rh2EPM.transform(meta_runhistory) # runtime_rf.train(X_runtime, y_runtime[:, 1].flatten()) # X_meta, Y_meta = rh2EPM.transform(meta_runhistory) # # Transform Y_meta on a per-dataset base # for meta_dataset in meta_runs_dataset_indices: # start_index, end_index = meta_runs_dataset_indices[meta_dataset] # end_index += 1 # Python indexing # Y_meta[start_index:end_index, 0]\ # [Y_meta[start_index:end_index, 0] >2.0] = 2.0 # dataset_minimum = np.min(Y_meta[start_index:end_index, 0]) # Y_meta[start_index:end_index, 0] = 1 - ( # (1. - Y_meta[start_index:end_index, 0]) / # (1. - dataset_minimum)) # Y_meta[start_index:end_index, 0]\ # [Y_meta[start_index:end_index, 0] > 2] = 2 smac.solver.stats.start_timing() # == first, evaluate all metelearning and default configurations smac.solver.incumbent = smac.solver.initial_design.run() for challenger in metalearning_configurations: smac.solver.incumbent, inc_perf = smac.solver.intensifier.intensify( challengers=[challenger], incumbent=smac.solver.incumbent, run_history=smac.solver.runhistory, aggregate_func=smac.solver.aggregate_func, time_bound=self.total_walltime_limit) if smac.solver.scenario.shared_model: pSMAC.write(run_history=smac.solver.runhistory, output_directory=smac.solver.scenario.output_dir, num_run=self.seed) if smac.solver.stats.is_budget_exhausted(): break # == after metalearning run SMAC loop while True: if smac.solver.scenario.shared_model: pSMAC.read(run_history=smac.solver.runhistory, output_dirs=glob.glob( self.backend.get_smac_output_glob()), configuration_space=self.config_space, logger=self.logger) choose_next_start_time = time.time() try: challengers = self.choose_next(smac) except Exception as e: self.logger.error(e) self.logger.error("Error in getting next configurations " "with SMAC. Using random configuration!") next_config = self.config_space.sample_configuration() challengers = [next_config] time_for_choose_next = time.time() - choose_next_start_time self.logger.info('Used %g seconds to find next ' 'configurations' % (time_for_choose_next)) time_for_choose_next = max(time_for_choose_next, 1.0) smac.solver.incumbent, inc_perf = smac.solver.intensifier.intensify( challengers=challengers, incumbent=smac.solver.incumbent, run_history=smac.solver.runhistory, aggregate_func=smac.solver.aggregate_func, time_bound=time_for_choose_next) if smac.solver.scenario.shared_model: pSMAC.write(run_history=smac.solver.runhistory, output_directory=smac.solver.scenario.output_dir, num_run=self.seed) if smac.solver.stats.is_budget_exhausted(): break self.runhistory = smac.solver.runhistory self.trajectory = smac.solver.intensifier.traj_logger.trajectory smac.runhistory = self.runhistory self.fANOVA_input = smac.get_X_y() return self.runhistory, self.trajectory, self.fANOVA_input