예제 #1
0
    def test_adaptive_capping(self):
        '''
            test _adapt_cutoff()
        '''
        intensifier = Intensifier(tae_runner=None,
                                  stats=self.stats,
                                  traj_logger=TrajLogger(output_dir=None,
                                                         stats=self.stats),
                                  rng=np.random.RandomState(12345),
                                  instances=list(range(5)),
                                  deterministic=False)

        for i in range(5):
            self.rh.add(config=self.config1,
                        cost=i + 1,
                        time=i + 1,
                        status=StatusType.SUCCESS,
                        instance_id=i,
                        seed=i,
                        additional_info=None)
        for i in range(3):
            self.rh.add(config=self.config2,
                        cost=i + 1,
                        time=i + 1,
                        status=StatusType.SUCCESS,
                        instance_id=i,
                        seed=i,
                        additional_info=None)

        inst_seed_pairs = self.rh.get_runs_for_config(self.config1)
        # cost used by incumbent for going over all runs in inst_seed_pairs
        inc_sum_cost = sum_cost(config=self.config1,
                                instance_seed_pairs=inst_seed_pairs,
                                run_history=self.rh)

        cutoff = intensifier._adapt_cutoff(challenger=self.config2,
                                           incumbent=self.config1,
                                           run_history=self.rh,
                                           inc_sum_cost=inc_sum_cost)
        # 15*1.2 - 6
        self.assertEqual(cutoff, 12)

        intensifier.cutoff = 5

        cutoff = intensifier._adapt_cutoff(challenger=self.config2,
                                           incumbent=self.config1,
                                           run_history=self.rh,
                                           inc_sum_cost=inc_sum_cost)
        # scenario cutoff
        self.assertEqual(cutoff, 5)
예제 #2
0
    def _adapt_cutoff(self, challenger: Configuration,
                      incumbent: Configuration,
                      run_history: RunHistory,
                      inc_sum_cost: float):
        """Adaptive capping:
        Compute cutoff based on time so far used for incumbent
        and reduce cutoff for next run of challenger accordingly

        !Only applicable if self.run_obj_time

        !runs on incumbent should be superset of the runs performed for the
         challenger

        Parameters
        ----------
        challenger : Configuration
            Configuration which challenges incumbent
        incumbent : Configuration
            Best configuration so far
        run_history : RunHistory
            Stores all runs we ran so far
        inc_sum_cost: float
            Sum of runtimes of all incumbent runs

        Returns
        -------
        cutoff: int
            Adapted cutoff
        """

        if not self.run_obj_time:
            return self.cutoff

        # cost used by challenger for going over all its runs
        # should be subset of runs of incumbent (not checked for efficiency
        # reasons)
        chall_inst_seeds = run_history.get_runs_for_config(challenger)
        chal_sum_cost = sum_cost(config=challenger,
                                 instance_seed_pairs=chall_inst_seeds,
                                 run_history=run_history)
        cutoff = min(self.cutoff,
                     inc_sum_cost * self.Adaptive_Capping_Slackfactor -
                     chal_sum_cost
                     )
        return cutoff
예제 #3
0
    def _race_challenger(self, challenger: Configuration,
                         incumbent: Configuration, run_history: RunHistory,
                         aggregate_func: typing.Callable):
        '''
            aggressively race challenger against incumbent

            Parameters
            ----------
            challenger : Configuration
                configuration which challenges incumbent
            incumbent : Configuration
                best configuration so far
            run_history : RunHistory
                stores all runs we ran so far
            aggregate_func: typing.Callable
                aggregate performance across instances

            Returns
            -------
            new_incumbent: Configuration
                either challenger or incumbent
        '''
        # at least one run of challenger
        # to increase chall_indx counter
        first_run = False

        # Line 8
        N = max(1, self.minR)

        inc_inst_seeds = set(run_history.get_runs_for_config(incumbent))
        # Line 9
        while True:
            chall_inst_seeds = set(run_history.get_runs_for_config(challenger))

            # Line 10
            missing_runs = list(inc_inst_seeds - chall_inst_seeds)

            # Line 11
            self.rs.shuffle(missing_runs)
            to_run = missing_runs[:min(N, len(missing_runs))]
            # Line 13 (Line 12 comes below...)
            missing_runs = missing_runs[min(N, len(missing_runs)):]

            # for adaptive capping
            # because of efficieny computed here
            inst_seed_pairs = list(inc_inst_seeds - set(missing_runs))
            # cost used by incumbent for going over all runs in inst_seed_pairs
            inc_sum_cost = sum_cost(config=incumbent,
                                    instance_seed_pairs=inst_seed_pairs,
                                    run_history=run_history)

            # Line 12
            # Run challenger on all <config,seed> to run
            for instance, seed in to_run:

                cutoff = self._adapt_cutoff(challenger=challenger,
                                            incumbent=incumbent,
                                            run_history=run_history,
                                            inc_sum_cost=inc_sum_cost)
                if cutoff is not None and cutoff <= 0:  # no time to validate challenger
                    self.logger.debug(
                        "Stop challenger itensification due to adaptive capping."
                    )
                    # challenger performs worse than incumbent
                    return incumbent

                if not first_run:
                    first_run = True
                    self._chall_indx += 1

                self.logger.debug("Add run of challenger")
                try:
                    status, cost, dur, res = self.tae_runner.start(
                        config=challenger,
                        instance=instance,
                        seed=seed,
                        cutoff=cutoff,
                        instance_specific=self.instance_specifics.get(
                            instance, "0"),
                        capped=(self.cutoff is not None)
                        and (cutoff < self.cutoff))
                    self._num_run += 1
                except CappedRunException:
                    return incumbent

            new_incumbent = self._compare_configs(
                incumbent=incumbent,
                challenger=challenger,
                run_history=run_history,
                aggregate_func=aggregate_func)
            if new_incumbent == incumbent:
                break
            elif new_incumbent == challenger:
                incumbent = challenger
                break
            else:  # Line 17
                # challenger is not worse, continue
                N = 2 * N

        return incumbent