def create_experiment(Experiment_name, Experiment_description=None):
    try:
        experiment = Experiment.load(experiment_name=Experiment_name)
    except Exception as ex:
        if "ResourceNotFound" in str(ex):
            experiment = Experiment.create(experiment_name=Experiment_name,
                                           description=Experiment_description)
def cleanup_experiment(Experiment_name):
    try:
        experiment = Experiment.load(experiment_name=Experiment_name)
        for trial_summary in experiment.list_trials():
            trial = Trial.load(trial_name=trial_summary.trial_name)
            for trial_component_summary in trial.list_trial_components():
                tc = TrialComponent.load(
                    trial_component_name=trial_component_summary.
                    trial_component_name)
                trial.remove_trial_component(tc)
                try:
                    # comment out to keep trial components
                    tc.delete()
                except:
                    # tc is associated with another trial
                    continue
                # to prevent throttling
                time.sleep(.5)
            trial.delete()
            experiment_name = experiment.experiment_name
        experiment.delete()
    except Exception as ex:
        if 'ResourceNotFound' in str(ex):
            print('%s is a new experiment. Nothing to delete' %
                  Experiment_name)
def cleanup_trial(Experiment_name, Trial_name):
    experiment = Experiment.load(experiment_name=Experiment_name)
    for trial_summary in experiment.list_trials():
        trial = Trial.load(trial_name=trial_summary.trial_name)
        #print(trial_summary.trial_name)
        if trial_summary.trial_name == Trial_name:
            for trial_component_summary in trial.list_trial_components():
                tc = TrialComponent.load(
                    trial_component_name=trial_component_summary.
                    trial_component_name)
                print(trial_component_summary.trial_component_name)
                trial.remove_trial_component(tc)
                try:
                    # comment out to keep trial components
                    tc.delete()
                except:
                    # tc is associated with another trial
                    continue
                # to prevent throttling
                time.sleep(.5)
            trial.delete()
예제 #4
0
def main():  # pragma: no cover
    """The main harness that creates or updates and runs the pipeline.

    Creates or updates the pipeline and runs it.
    """
    parser = argparse.ArgumentParser(
        "Creates or updates and runs the pipeline for the pipeline script.")

    parser.add_argument(
        "-n",
        "--module-name",
        dest="module_name",
        type=str,
        help="The module name of the pipeline to import.",
    )
    parser.add_argument(
        "-kwargs",
        "--kwargs",
        dest="kwargs",
        default=None,
        help=
        "Dict string of keyword arguments for the pipeline generation (if supported)",
    )
    parser.add_argument(
        "-role-arn",
        "--role-arn",
        dest="role_arn",
        type=str,
        help="The role arn for the pipeline service execution role.",
    )
    parser.add_argument(
        "-description",
        "--description",
        dest="description",
        type=str,
        default=None,
        help="The description of the pipeline.",
    )
    parser.add_argument(
        "-tags",
        "--tags",
        dest="tags",
        default=None,
        help=
        """List of dict strings of '[{"Key": "string", "Value": "string"}, ..]'""",
    )
    args = parser.parse_args()

    if args.module_name is None or args.role_arn is None:
        parser.print_help()
        sys.exit(2)
    tags = convert_struct(args.tags)

    try:
        pipeline = get_pipeline_driver(args.module_name, args.kwargs)
        print(
            "###### Creating/updating a SageMaker Pipeline with the following definition:"
        )
        parsed = json.loads(pipeline.definition())
        print(json.dumps(parsed, indent=2, sort_keys=True))

        upsert_response = pipeline.upsert(role_arn=args.role_arn,
                                          description=args.description,
                                          tags=tags)
        print(
            "\n###### Created/Updated SageMaker Pipeline: Response received:")
        print(upsert_response)

        execution = pipeline.start()
        print(
            f"\n###### Execution started with PipelineExecutionArn: {execution.arn}"
        )

        # Now we describe execution instance and list the steps in the execution to find out more about the execution.
        execution_run = execution.describe()
        print(execution_run)

        # Create or Load the 'Experiment'
        try:
            experiment = Experiment.create(
                experiment_name=pipeline.name,
                description='Amazon Customer Reviews BERT Pipeline Experiment')
        except:
            experiment = Experiment.load(experiment_name=pipeline.name)

        print('Experiment name: {}'.format(experiment.experiment_name))

        # Add Execution Run as Trial to Experiments
        execution_run_name = execution_run['PipelineExecutionDisplayName']
        print(execution_run_name)

        # Create the `Trial`
        timestamp = int(time.time())

        trial = Trial.create(trial_name=execution_run_name,
                             experiment_name=experiment.experiment_name,
                             sagemaker_boto_client=sm)

        trial_name = trial.trial_name
        print('Trial name: {}'.format(trial_name))

        ######################################################
        ## Parse Pipeline Definition For Processing Job Args
        ######################################################

        processing_param_dict = {}

        for step in parsed['Steps']:
            print('step: {}'.format(step))
            if step['Name'] == 'Processing':
                print('Step Name is Processing...')
                arg_list = step['Arguments']['AppSpecification'][
                    'ContainerArguments']
                print(arg_list)
                num_args = len(arg_list)
                print(num_args)

                # arguments are (key, value) pairs in this list, so we extract them in pairs
                # using [i] and [i+1] indexes and stepping by 2 through the list
                for i in range(0, num_args, 2):
                    key = arg_list[i].replace('--', '')
                    value = arg_list[i + 1]
                    print('arg key: {}'.format(key))
                    print('arg value: {}'.format(value))
                    processing_param_dict[key] = value

        ##############################
        ## Wait For Execution To Finish
        ##############################

        print("Waiting for the execution to finish...")
        execution.wait()
        print("\n#####Execution completed. Execution step details:")

        # List Execution Steps
        print(execution.list_steps())

        # List All Artifacts Generated By The Pipeline
        processing_job_name = None
        training_job_name = None

        from sagemaker.lineage.visualizer import LineageTableVisualizer

        viz = LineageTableVisualizer(sagemaker.session.Session())
        for execution_step in reversed(execution.list_steps()):
            print(execution_step)
            # We are doing this because there appears to be a bug of this LineageTableVisualizer handling the Processing Step
            if execution_step['StepName'] == 'Processing':
                processing_job_name = execution_step['Metadata'][
                    'ProcessingJob']['Arn'].split('/')[-1]
                print(processing_job_name)
                #display(viz.show(processing_job_name=processing_job_name))
            elif execution_step['StepName'] == 'Train':
                training_job_name = execution_step['Metadata']['TrainingJob'][
                    'Arn'].split('/')[-1]
                print(training_job_name)
                #display(viz.show(training_job_name=training_job_name))
            else:
                #display(viz.show(pipeline_execution_step=execution_step))
                time.sleep(5)

        # Add Trial Compontents To Experiment Trial
        processing_job_tc = '{}-aws-processing-job'.format(processing_job_name)
        print(processing_job_tc)

        # -aws-processing-job is the default name assigned by ProcessingJob
        response = sm.associate_trial_component(
            TrialComponentName=processing_job_tc, TrialName=trial_name)

        # -aws-training-job is the default name assigned by TrainingJob
        training_job_tc = '{}-aws-training-job'.format(training_job_name)
        print(training_job_tc)

        response = sm.associate_trial_component(
            TrialComponentName=training_job_tc, TrialName=trial_name)

        ##############
        # Log Additional Parameters within Trial
        ##############
        print('Logging Processing Job Parameters within Experiment Trial...')
        processing_job_tracker = tracker.Tracker.load(
            trial_component_name=processing_job_tc)

        for key, value in processing_param_dict.items():
            print('key: {}, value: {}'.format(key, value))
            processing_job_tracker.log_parameters({key: str(value)})
            # must save after logging
            processing_job_tracker.trial_component.save()

    except Exception as e:  # pylint: disable=W0703
        print(f"Exception: {e}")
        sys.exit(1)