if smoothtype2 == "s": # smoothing smoothtype = raw_input('--> Boxcar or Gaussian smoothing? (b/g) ') while smoothtype != "b" and smoothtype != "g": smoothtype = raw_input('--> Please enter b or g: ') while True: try: kern = int(raw_input('--> Smoothing kernel: ')) break except ValueError: print '--> Please enter an integer' print ' ' # smoothing method if smoothtype == "b": # boxcar smoothing sap_flux2, smth_flux = smoothing.boxsmooth(time, sap_flux, kern) elif smoothtype == "g": # gaussian smoothing sap_flux2, smth_flux = smoothing.gausssmooth(time, sap_flux, kern) # plotting phase curve plt.figure(2) plt.plot(time, smth_flux, 'ro', markersize=3) plt.xlabel('Time mod %f days' % foldper) plt.ylabel('Fractional Intensity') exec("plt.title('%d')" % kic) exec("plt.savefig('kic%d_phase.png')" % kic) elif smoothtype2 == "b": # binning while True: try:
index = (j + 1) * k + (x - k) * j if img == 0: pass else: flux2 = second_flux[index,:] # creating a blend array to remove NaNs blend = np.array([time, flux2]) blend = np.transpose(blend) blend2 = np.ma.compress_rows(np.ma.fix_invalid(blend)) time2 = blend2[:,0] flux2 = blend2[:,1] if smoothtype == "b": # boxcar smoothing flux3, smth_flux = smoothing.boxsmooth(time2, flux2, kern) elif smoothtype == "g": # gaussian smoothing flux3, smth_flux = smoothing.gausssmooth(time2, flux2, kern) exec("pixel%d_flux = flux3" % index) exec("pixel%d_time = time2" % index) exec("tempflux = pixel%d_flux" % index) exec("temptime = pixel%d_time" % index) clip = inp * np.std(tempflux) meanflux = np.mean(tempflux) upperbound = meanflux + clip lowerbound = meanflux - clip
sap_flux_0 = table_0['SAP_FLUX'] #sap_flux_err_0 = table_0['SAP_FLUX_ERR'] time_0 = table_0['TIME'] hdulist.close() # creating a blend array to remove NaNs blend_0 = np.array([time_0, sap_flux_0]) blend_0 = np.transpose(blend_0) blend2_0 = np.ma.compress_rows(np.ma.fix_invalid(blend_0)) time_0 = blend2_0[:,0] sap_flux_0 = blend2_0[:,1] if smoothtype == "b": # boxcar smoothing sap_flux2_0, smth_flux_0 = smoothing.boxsmooth(time_0, sap_flux_0, kern) elif smoothtype == "g": # gaussian smoothing sap_flux2_0, smth_flux_0 = smoothing.gausssmooth(time_0, sap_flux_0, kern) ### FIRST QUARTER ### hdulist = pyfits.open('kplr00skeleton-2009166043257_llc.fits') table_1 = hdulist[1].data sap_flux_1 = table_1['SAP_FLUX'] #sap_flux_err_1 = table_1['SAP_FLUX_ERR'] time_1 = table_1['TIME'] hdulist.close()