예제 #1
0
def est_smooth_ideal(moves, ts, stype='sparc'):
    """Estimates the smoothness of the ideal movements.
    """
    sys.stdout.write('.')
    if stype == 'sparc':
        return np.array(
            [sparc(_m, fs=1/ts, padlevel=4, fc=10., amp_th=0.05)[0]
             for _m in moves])
    else:
        return np.array([ldlj(_m, fs=1/ts) for _m in moves])
예제 #2
0
def estimate_smoothness(moves, ts, param, stype="sparc"):
    """Estimates the smoothness of the movements of two different scales.
    """
    if stype == 'sparc':
        return np.array([[
            sparc(moves[i, j], fs=1 / ts, padlevel=4, fc=10., amp_th=0.05)[0]
            for j in xrange(param['N_m'])
        ] for i in xrange(len(param['scales']))])
    else:
        return np.array([[ldlj(moves[i, j], ts) for j in xrange(param['N_m'])]
                         for i in xrange(len(param['scales']))])
예제 #3
0
def est_smooth_ideal(moves, ts, stype='sparc'):
    """Estimates the smoothness of the ideal movements.
    """
    sys.stdout.write('.')
    if stype == 'sparc':
        return np.array([
            sparc(_m, fs=1 / ts, padlevel=4, fc=10., amp_th=0.05)[0]
            for _m in moves
        ])
    else:
        return np.array([ldlj(_m, fs=1 / ts) for _m in moves])
예제 #4
0
def estimate_smoothness(moves, ts, param, stype="sparc"):
    """Estimates the smoothness of the movements of two different scales.
    """
    if stype == 'sparc':
        return np.array(
            [[sparc(moves[i, j], fs=1/ts, padlevel=4, fc=10., amp_th=0.05)[0]
              for j in xrange(param['N_m'])]
             for i in xrange(len(param['scales']))])
    else:
        return np.array(
            [[ldlj(moves[i, j], ts)
              for j in xrange(param['N_m'])]
             for i in xrange(len(param['scales']))])
예제 #5
0
def est_smooth_noisy(moves, ts, param, stype='sparc'):
    """Estimates the smoothness of noisy movements.
    """
    sys.stdout.write('.')
    if stype == 'sparc':
        return np.array([[[
            sparc(moves[i, j, k], fs=1 / ts, padlevel=4, fc=10.,
                  amp_th=0.05)[0] for k in xrange(param['N_n'])
        ] for j in xrange(len(param['snr']))] for i in xrange(param['N_m'])])
    else:
        return np.array(
            [[[ldlj(moves[i, j, k], ts) for k in xrange(param['N_n'])]
              for j in xrange(len(param['snr']))]
             for i in xrange(param['N_m'])])
예제 #6
0
def est_smooth_noisy(moves, ts, param, stype='sparc'):
    """Estimates the smoothness of noisy movements.
    """
    sys.stdout.write('.')
    if stype == 'sparc':
        return np.array(
            [[[sparc(moves[i, j, k], fs=1/ts,
                     padlevel=4, fc=10., amp_th=0.05)[0]
               for k in xrange(param['N_n'])]
              for j in xrange(len(param['snr']))]
             for i in xrange(param['N_m'])])
    else:
        return np.array(
            [[[ldlj(moves[i, j, k], ts)
               for k in xrange(param['N_n'])]
              for j in xrange(len(param['snr']))]
             for i in xrange(param['N_m'])])