def iDW(xt, yt, xtest, ytest):
    ########### The IDW model

    t = IDW(print_prediction=False)
    t.set_training_values(xt, yt)
    t.train()

    # Prediction of the validation points
    y = t.predict_values(xtest)
    print('IDW,  err: ' + str(compute_rms_error(t, xtest, ytest)))
    title = 'IDW'
    return t, title, xtest, ytest
예제 #2
0
    def test_idw(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.surrogate_models import IDW

        xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0])
        yt = np.array([0.0, 1.0, 1.5, 0.5, 1.0])

        sm = IDW(p=2)
        sm.set_training_values(xt, yt)
        sm.train()

        num = 100
        x = np.linspace(0.0, 4.0, num)
        y = sm.predict_values(x)

        plt.plot(xt, yt, "o")
        plt.plot(x, y)
        plt.xlabel("x")
        plt.ylabel("y")
        plt.legend(["Training data", "Prediction"])
        plt.show()
예제 #3
0
    def test_idw(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.surrogate_models import IDW

        xt = np.array([0., 1., 2., 3., 4.])
        yt = np.array([0., 1., 1.5, 0.5, 1.0])

        sm = IDW(p=2)
        sm.set_training_values(xt, yt)
        sm.train()

        num = 100
        x = np.linspace(0., 4., num)
        y = sm.predict_values(x)

        plt.plot(xt, yt, 'o')
        plt.plot(x, y)
        plt.xlabel('x')
        plt.ylabel('y')
        plt.legend(['Training data', 'Prediction'])
        plt.show()