예제 #1
0
 def network_atlas(C, K, alpha, T):
     datap = []
     for i in range(len(C)):
         datap.append(C[i][:][:])
     affinity_networks = snf.make_affinity(datap, K=K, mu=alpha) #The first step in SNF is converting these data arrays into similarity (or "affinity") networks.
     fused_network_atlas_C = snf.snf(affinity_networks, K=K, alpha=alpha, t=T) # Once we have our similarity networks we can fuse them together.
     return fused_network_atlas_C
예제 #2
0
파일: utils.py 프로젝트: SCUT-CCNL/HiGCN
def cal_A(x):
    ## SNF
    gene_A = snf.make_affinity(x, metric='cosine', K=20)  #N_i
    gene_A = torch.FloatTensor(gene_A)
    ## End of SNF
    ### replace snf with pd.corr()
    # gene_A = pd.DataFrame(x)
    # gene_A = gene_A.T.corr()
    # gene_A = torch.FloatTensor(np.array(gene_A))
    # ### End of the replace
    # ### replace snf with pg.pcorr()
    # gene_A = pd.DataFrame(x)
    # gene_A = gene_A.T.pcorr()
    # gene_A = torch.FloatTensor(np.array(gene_A))
    # ###
    value, index = gene_A.sort(descending=True)
    index_0 = index[:, :10]  #k
    gene_A_kNN = torch.zeros_like(gene_A)
    for i in range(len(gene_A)):
        temp = gene_A[i, index_0[i]]
        temp = torch.softmax(temp, dim=0)
        k = 0
        for j in index_0[i]:
            gene_A_kNN[i, j] = temp[k]
            k = k + 1
    return gene_A_kNN
예제 #3
0
def snf_cal(D):

    view_num = len(D)
    k_neighs = 20
    mu = 0.4
    iter = 20

    aff_mat_ls = snf.make_affinity(D, K=k_neighs, mu=mu)

    if view_num != len(aff_mat_ls):
        assert "the number of views check fails"

    # denoise for each network
    order = 2
    alpha = 0.7
    ne_aff_mat_ls = [
        ne(aff_mat_ls[i], order, k_neighs, alpha) for i in range(view_num)
    ]

    # fuse networks
    fuesd_network = snf.snf(ne_aff_mat_ls[0:3], K=k_neighs, t=iter)
    ne_fused_network = ne(fuesd_network, order, k_neighs, alpha)

    D = np.diag(ne_fused_network.sum(axis=1))
    L = D - ne_fused_network

    return L
예제 #4
0
파일: untils.py 프로젝트: kwtan0909/HiGCN
def cal_A(x):
    gene_A = snf.make_affinity(x, metric='cosine', K=10)
    gene_A = torch.FloatTensor(gene_A)
    value, index = gene_A.sort(descending=True)
    index_0 = index[:, :10]
    gene_A_kNN = torch.zeros_like(gene_A)
    for i in range(len(gene_A)):
        temp = gene_A[i, index_0[i]]
        temp = torch.softmax(temp, dim=0)
        k = 0
        for j in index_0[i]:
            gene_A_kNN[i, j] = temp[k]
            k = k + 1
    return gene_A_kNN
예제 #5
0
def __snf_based_merge(link_1, link_2):
    """
    snf network merge based on Wang, Bo, et al. Nature methods 11.3 (2014): 333.
    """
    warnings.simplefilter("ignore")
    node_list = list(set(link_1['source']) & set(link_1['target']) & set(link_2['source']) & set(link_2['target']))

    adjlinks = list()
    adjlinks.append(__linkage_to_adjlink(link_1, node_list))
    adjlinks.append(__linkage_to_adjlink(link_2, node_list))
    affinity_matrix = snf.make_affinity(adjlinks)
    fused_network = snf.snf(affinity_matrix)
    Graph = nx.from_pandas_adjacency(pd.DataFrame(fused_network, index=node_list, columns=node_list))
    return pd.DataFrame(Graph.edges, columns=['source', 'target'])
예제 #6
0
def NAGFS(train_data, train_Labels, Nf, displayResults):

    XC1 = np.empty((0, train_data.shape[2], train_data.shape[2]), int)
    XC2 = np.empty((0, train_data.shape[2], train_data.shape[2]), int)

    # * * (5.1) In this part, Training samples which were chosen last part are seperated as class-1 and class-2 samples.
    for i in range(len(train_Labels)):

        if (train_Labels[i] == 1):
            XC1 = np.append(XC1, [train_data[i, :, :]], axis=0)
        else:
            XC2 = np.append(XC2, [train_data[i, :, :]], axis=0)

# * *

# * * (5.2) SIMLR functions need matrixes which has 1x(N*N) shape.So all training matrixes are converted to this shape.

#For C1 group
    k = np.empty((0, XC1.shape[1] * XC1.shape[1]), int)
    for i in range(XC1.shape[0]):
        k1 = np.concatenate(XC1[i])  #it vectorizes all NxN matrixes
        k = np.append(k, [k1.reshape(XC1.shape[1] * XC1.shape[1])], axis=0)

# For C2 group
    kk = np.empty((0, XC2.shape[1] * XC2.shape[1]), int)
    for i in range(XC2.shape[0]):
        kk1 = np.concatenate(XC2[i])
        kk = np.append(kk, [kk1.reshape(XC2.shape[1] * XC2.shape[1])], axis=0)

# * *

# * * (5.3) SIMLR(Single-Cell Interpretation via Multi Kernel Learning) is used to clustering of samples of 2 classes into 3 clusters.

#For C1 group
#[t1, S2, F2, ydata2,alpha2] = SIMLR(kk,3,2);
    simlr = SIMLR.SIMLR_LARGE(
        3, 4, 0
    )  #This is how we initialize an object for SIMLR.The first input is number of rank (clusters) and the second input is number of neighbors.The third one is an binary indicator whether to use memory-saving mode.You can turn it on when the number of cells are extremely large to save some memory but with the cost of efficiency.
    S1, F1, val1, ind1 = simlr.fit(k)
    y_pred_X1 = simlr.fast_minibatch_kmeans(
        F1, 3
    )  #This SIMLR function predicts training 1x(N*N) samples what they belong.
    #to first, second or third clusters.(0,1 or 2)

    # For C2 group
    simlr = SIMLR.SIMLR_LARGE(3, 4, 0)
    S2, F2, val2, ind2 = simlr.fit(kk)
    y_pred_X2 = simlr.fast_minibatch_kmeans(F2, 3)

    # * *

    # * * (5.4) Training samples are placed into their predicted clusters for Class-1 and Class-2 samples.
    #For XC1, +1 k
    Ca1 = np.empty((0, XC1.shape[2], XC1.shape[2]), int)
    Ca2 = np.empty((0, XC1.shape[2], XC1.shape[2]), int)
    Ca3 = np.empty((0, XC1.shape[2], XC1.shape[2]), int)

    for i in range(len(y_pred_X1)):
        if y_pred_X1[i] == 0:
            Ca1 = np.append(Ca1, [XC1[i, :, :]], axis=0)
            Ca1 = np.abs(Ca1)
        elif y_pred_X1[i] == 1:
            Ca2 = np.append(Ca2, [XC1[i, :, :]], axis=0)
            Ca2 = np.abs(Ca2)
        elif y_pred_X1[i] == 2:
            Ca3 = np.append(Ca3, [XC1[i, :, :]], axis=0)
            Ca3 = np.abs(Ca3)

#For XC2, -1 kk
    Cn1 = np.empty((0, XC2.shape[2], XC2.shape[2]), int)
    Cn2 = np.empty((0, XC2.shape[2], XC2.shape[2]), int)
    Cn3 = np.empty((0, XC2.shape[2], XC2.shape[2]), int)

    for i in range(len(y_pred_X2)):
        if y_pred_X2[i] == 0:
            Cn1 = np.append(Cn1, [XC2[i, :, :]], axis=0)
            Cn1 = np.abs(Cn1)
        elif y_pred_X2[i] == 1:
            Cn2 = np.append(Cn2, [XC2[i, :, :]], axis=0)
            Cn2 = np.abs(Cn2)
        elif y_pred_X2[i] == 2:
            Cn3 = np.append(Cn3, [XC2[i, :, :]], axis=0)
            Cn3 = np.abs(Cn3)

# * *

#SNF PROCESS
# * * (5.5) SNF(Similarity Network Fusion) is used for create a local centered network atlas which is the best representative matrix
#of other similar matrixes.In this process, for every class, there are 3 clusters, so snf create 3 representative-center
#matrixes for both classes.After that it create 1 general representative matrixes of 3 matrixes.
#So finally there are 2 general representative matrixes.

#Ca1
    class1 = []
    if Ca1.shape[0] > 1:
        for i in range(Ca1.shape[0]):
            class1.append(Ca1[i, :, :])
        affinity_networks = snf.make_affinity(class1,
                                              metric='euclidean',
                                              K=20,
                                              mu=0.5)
        AC11 = snf.snf(affinity_networks,
                       K=20)  #First local network atlas for C1 group
        class1 = []
    else:
        AC11 = Ca1[0]

    #Ca2
    class1 = []
    if Ca2.shape[0] > 1:
        for i in range(Ca2.shape[0]):
            class1.append(Ca2[i, :, :])
        affinity_networks = snf.make_affinity(class1,
                                              metric='euclidean',
                                              K=20,
                                              mu=0.5)
        AC12 = snf.snf(affinity_networks,
                       K=20)  #Second local network atlas for C1 group
        class1 = []
    else:
        AC12 = Ca2[0]

    #Ca3
    class1 = []
    if Ca3.shape[0] > 1:
        for i in range(Ca3.shape[0]):
            class1.append(Ca3[i, :, :])
        affinity_networks = snf.make_affinity(class1,
                                              metric='euclidean',
                                              K=20,
                                              mu=0.5)
        AC13 = snf.snf(affinity_networks,
                       K=20)  #Third local network atlas for C1 group
        class1 = []
    else:
        AC13 = Ca3[0]

    #Cn1
    if Cn1.shape[0] > 1:
        class1 = []
        for i in range(Cn1.shape[0]):
            class1.append(Cn1[i, :, :])
        affinity_networks = snf.make_affinity(class1,
                                              metric='euclidean',
                                              K=20,
                                              mu=0.5)
        AC21 = snf.snf(affinity_networks,
                       K=20)  #First local network atlas for C2 group
        class1 = []
    else:
        AC21 = Cn1[0]

    #Cn2
    class1 = []
    if Cn2.shape[0] > 1:
        for i in range(Cn2.shape[0]):
            class1.append(Cn2[i, :, :])
        affinity_networks = snf.make_affinity(class1,
                                              metric='euclidean',
                                              K=20,
                                              mu=0.5)
        AC22 = snf.snf(affinity_networks,
                       K=20)  #Second local network atlas for C2 group
        class1 = []
    else:
        AC22 = Cn2[0]

    #Cn3
    class1 = []
    if Cn3.shape[0] > 1:
        for i in range(Cn3.shape[0]):
            class1.append(Cn3[i, :, :])
        affinity_networks = snf.make_affinity(class1,
                                              metric='euclidean',
                                              K=20,
                                              mu=0.5)
        AC23 = snf.snf(affinity_networks,
                       K=20)  #Third local network atlas for C2 group
        class1 = []
    else:
        AC23 = Cn3[0]

    #A1
    AC1 = snf.snf([AC11, AC12, AC13], K=20)  #Global network atlas for C1 group

    #A2
    AC2 = snf.snf([AC21, AC22, AC23], K=20)  #Global network atlas for C2 group

    # * *

    # * * (5.6) In this part, most 5 discriminative connectivities are determined and their indexes are saved in ind array.

    D0 = np.abs(AC1 - AC2)  #find differences between AC1 and AC2
    D = np.triu(D0)  #Upper triangular part of matrix
    D1 = D[np.triu_indices(AC1.shape[0], 1)]  #Upper triangular part of matrix
    D1 = D1.transpose()
    D2 = np.sort(D1)  #Ranking features
    D2 = D2[::-1]
    Dif = D2[0:Nf]  #Extract most 5 discriminative connectivities
    D3 = []
    for i in D1:
        D3.append(i)
    ind = []
    for i in range(len(Dif)):
        ind.append(D3.index(Dif[i]))
# * *

# * * (5.7) Coordinates of most 5 disriminative features are determined for plotting for each iteration if displayresults==1.

    coord = []
    for i in range(len(Dif)):
        for j in range(D0.shape[0]):
            for k in range(D0.shape[1]):
                if Dif[i] == D0[j][k]:
                    coord.append([j, k])

    topFeatures = np.zeros((D0.shape[0], D0.shape[1]))
    s = 0
    ss = 0
    for i in range(len(Dif) * 2):
        topFeatures[coord[i][0]][coord[i][1]] = Dif[s]
        ss += 1
        if ss == 2:
            s += 1
            ss = 0
    if displayResults == 1:
        plt.imshow(topFeatures)
        plt.colorbar()
        plt.show()
# * *

    return AC1, AC2, ind
예제 #7
0
def BGSR(train_data, train_labels, HR_features, kn, K1, K2):

    #These are a reproduction of the closeness, degrees and isDirected functions of aeolianine since I couldn't find a compatible functions in python.
    def isDirected(adj):

        adj_transpose = np.transpose(adj)
        for i in range(len(adj)):
            for j in range(len(adj[0])):
                if adj[j][i] != adj_transpose[j][i]:
                    return True
        return False

    def degrees(adj):

        indeg = np.sum(adj, axis=1)
        outdeg = np.sum(np.transpose(adj), axis=0)
        if isDirected(adj):
            deg = indeg + outdeg  #total degree
        else:  #undirected graph: indeg=outdeg
            deg = indeg + np.transpose(
                np.diag(adj))  #add self-loops twice, if any

        return deg

    def closeness(G, adj):

        c = np.zeros((len(adj), 1))
        all_sum = np.zeros((len(adj[1]), 1))
        spl = nx.all_pairs_dijkstra_path_length(G, weight="weight")
        spl_list = list(spl)
        for i in range(len(adj[1])):
            spl_dict = spl_list[i][1]
            c[i] = 1 / sum(spl_dict.values())
        return c

    sz1, sz2, sz3 = train_data.shape

    # (1) Estimation of a connectional brain template (CBT)
    CBT = atlas(train_data, train_labels)

    # (2) Proposed CBT-guided graph super-resolution
    # Initialization
    c_degree = np.zeros((sz1, sz2))
    c_closeness = np.zeros((sz1, sz2))
    c_betweenness = np.zeros((sz1, sz2))
    residual = np.zeros(
        (len(train_data), len(train_data[1]), len(train_data[1])))

    for i in range(sz1):

        residual[i][:][:] = np.abs(train_data[i][:][:] -
                                   CBT)  #Residual brain graph
        G = nx.from_numpy_matrix(np.array(residual[i][:][:]))
        for j in range(0, sz2):
            c_degree[i][j] = degrees(residual[i][:][:])[j]  #Degree matrix
            c_closeness[i][j] = closeness(
                G, residual[i][:][:])[j]  #Closeness matrix
            c_betweenness[i][j] = nx.betweenness_centrality(
                G, weight=True)[j]  #Betweenness matrix

    # Degree similarity matrix
    simlr1 = SIMLR.SIMLR_LARGE(
        1, K1, 0
    )  #The first input is number of rank (clusters) and the second input is number of neighbors.The third one is an binary indicator whether to use memory-saving mode.You can turn it on when the number of cells are extremely large to save some memory but with the cost of efficiency.
    S1, F1, val1, ind1 = simlr1.fit(c_degree)
    y_pred_X1 = simlr1.fast_minibatch_kmeans(F1, 1)

    # Closeness similarity matrix
    simlr2 = SIMLR.SIMLR_LARGE(1, K1, 0)
    S2, F2, val2, ind2 = simlr2.fit(c_closeness)
    y_pred_X2 = simlr2.fast_minibatch_kmeans(F2, 1)

    # Betweenness similarity matrix
    if not np.count_nonzero(c_betweenness):
        S3 = np.zeros((len(c_betweenness), len(c_betweenness)))
    else:
        simlr3 = SIMLR.SIMLR_LARGE(1, K1, 0)
        S3, F3, val3, ind3 = simlr3.fit(c_betweenness)
        y_pred_X3 = simlr3.fast_minibatch_kmeans(F3, 1)

    alpha = 0.5  # hyperparameter, usually (0.3~0.8)
    T = 20  # Number of Iterations, usually (10~20)

    wp1 = snf.make_affinity(S1.toarray(), K=K2, mu=alpha)
    wp2 = snf.make_affinity(S2.toarray(), K=K2, mu=alpha)
    wp3 = snf.make_affinity(S3, K=K2, mu=alpha)
    FSM = snf.snf([wp1, wp2, wp3], K=K2, alpha=alpha,
                  t=T)  #Fused similarity matrix
    FSM_sorted = np.sort(FSM, axis=0)

    ind = np.zeros((kn, 1))
    HR_ind = np.zeros((kn, len(HR_features[1])))
    for i in range(1, kn + 1):
        a, b, pos = np.intersect1d(FSM_sorted[len(FSM_sorted) - i][0],
                                   FSM,
                                   return_indices=True)
        ind[i - 1] = pos
        for j in range(len(HR_features[1])):
            HR_ind[i - 1][j] = HR_features[int(ind[i - 1][0])][j]

    pHR = np.mean(HR_ind, axis=0)  # Predicted features of the testing subject
    return pHR