def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the .tsv files (or other data files) for the task." ) parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type selected in the list: ") parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list") parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys())) parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written." ) parser.add_argument("--vocab_file", default='', type=str) parser.add_argument("--spm_model_file", default='', type=str) ## Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument( "--cache_dir", default="", type=str, help= "Where do you want to store the pre-trained models downloaded from s3") parser.add_argument( "--max_seq_length", default=512, type=int, help= "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument( "--do_predict", action='store_true', help="Whether to run the model in inference mode on the test set.") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--max_steps", default=-1, type=int, help= "If > 0: set total number of training steps to perform. Override num_train_epochs." ) parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training." ) parser.add_argument('--logging_steps', type=int, default=10, help="Log every X updates steps.") parser.add_argument('--save_steps', type=int, default=1000, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action='store_true', help= "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" ) parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument( '--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--fp16', action='store_true', help= "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" ) parser.add_argument( '--fp16_opt_level', type=str, default='O1', help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") os.environ['CUDA_VISIBLE_DEVICES'] = "0" args = parser.parse_args() if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) args.output_dir = args.output_dir + '{}'.format(args.model_type) if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) init_logger(log_file=args.output_dir + '/{}-{}.log'.format(args.model_type, args.task_name)) if os.path.exists(args.output_dir) and os.listdir( args.output_dir ) and args.do_train and not args.overwrite_output_dir: raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome." .format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed seed_everything(args.seed) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config = AlbertConfig.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name) tokenizer = tokenization_albert.FullTokenizer( vocab_file=args.vocab_file, do_lower_case=args.do_lower_case, spm_model_file=args.spm_model_file) model = AlbertForSentenceRanking.from_pretrained( args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config) if args.local_rank == 0: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='train') global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = model.module if hasattr( model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, 'training_args.bin')) # Evaluation results = [] if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenization_albert.FullTokenizer( vocab_file=args.vocab_file, do_lower_case=args.do_lower_case, spm_model_file=args.spm_model_file) checkpoints = [(0, args.output_dir)] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint) for checkpoint in checkpoints if checkpoint.find('checkpoint') != -1] checkpoints = sorted(checkpoints, key=lambda x: x[0]) logger.info("Evaluate the following checkpoints: %s", checkpoints) for _, checkpoint in checkpoints: global_step = checkpoint.split( '-')[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split( '/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = AlbertForSentenceRanking.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) results.extend([(k + '_{}'.format(global_step), v) for k, v in result.items()]) output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt") with open(output_eval_file, "w") as writer: for key, value in results: writer.write("%s = %s\n" % (key, str(value)))
def train(args, train_dataset, model, tokenizer): """ Train the model """ args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = SequentialSampler( train_dataset) if args.local_rank == -1 else DistributedSampler( train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate_fn) if args.max_steps > 0: num_training_steps = args.max_steps args.num_train_epochs = args.max_steps // ( len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: num_training_steps = len( train_dataloader ) // args.gradient_accumulation_steps * args.num_train_epochs args.warmup_steps = int(num_training_steps * args.warmup_proportion) # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], 'weight_decay': args.weight_decay }, { 'params': [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) ], 'weight_decay': 0.0 }] # optimizer = Lamb(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) optimizer = AdamW(params=optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=num_training_steps) if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", num_training_steps) global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() seed_everything( args.seed ) # Added here for reproductibility (even between python 2 and 3) for _ in range(int(args.num_train_epochs)): pbar = ProgressBar(n_total=len(train_dataloader), desc='Training') for step, batch in enumerate(train_dataloader): model.train() batch = tuple(t.to(args.device) for t in batch) inputs = { 'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3] } inputs['token_type_ids'] = batch[2] outputs = model(**inputs) loss = outputs[ 0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean( ) # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [ -1, 0 ] and args.logging_steps > 0 and global_step % args.logging_steps == 0: #Log metrics if args.local_rank == -1: # Only evaluate when single GPU otherwise metrics may not average well evaluate(args, model, tokenizer) if args.local_rank in [ -1, 0 ] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr( model, 'module' ) else model # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, 'training_args.bin')) logger.info("Saving model checkpoint to %s", output_dir) pbar(step, {'loss': loss.item()}) print(" ") if 'cuda' in str(args.device): torch.cuda.empty_cache() return global_step, tr_loss / global_step
def train(args, train_dataset, model, tokenizer): """ Train the model """ args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler( train_dataset) if args.local_rank == -1 else DistributedSampler( train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate_fn) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // ( len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len( train_dataloader ) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], "weight_decay": args.weight_decay, }, { "params": [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) ], "weight_decay": 0.0 }, ] args.warmup_steps = int(t_total * args.warmup_proportion) optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join( args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt")): # Load in optimizer and scheduler states optimizer.load_state_dict( torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict( torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path ) and "checkpoint" in args.model_name_or_path: # set global_step to gobal_step of last saved checkpoint from model path global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0]) epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % ( len(train_dataloader) // args.gradient_accumulation_steps) logger.info( " Continuing training from checkpoint, will skip to saved global_step" ) logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() seed_everything( args.seed ) # Added here for reproductibility (even between python 2 and 3) for _ in range(int(args.num_train_epochs)): pbar = ProgressBar(n_total=len(train_dataloader), desc='Training') for step, batch in enumerate(train_dataloader): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() batch = tuple(t.to(args.device) for t in batch) inputs = { "input_ids": batch[0], "attention_mask": batch[1], "start_positions": batch[3], "end_positions": batch[4] } if args.model_type != "distilbert": # XLM and RoBERTa don"t use segment_ids inputs["token_type_ids"] = (batch[2] if args.model_type in ["bert", "xlnet"] else None) outputs = model(**inputs) loss = outputs[ 0] # model outputs are always tuple in pytorch-transformers (see doc) if args.n_gpu > 1: loss = loss.mean( ) # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() pbar(step, {'loss': loss.item()}) tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) scheduler.step() # Update learning rate schedule optimizer.step() model.zero_grad() global_step += 1 if args.local_rank in [ -1, 0 ] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics print(" ") if args.local_rank == -1: # Only evaluate when single GPU otherwise metrics may not average well evaluate(args, model, tokenizer) if args.local_rank in [ -1, 0 ] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join( args.output_dir, "checkpoint-{}".format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) tokenizer.save_vocabulary(output_dir) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) print(" ") if 'cuda' in str(args.device): torch.cuda.empty_cache() return global_step, tr_loss / global_step
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys())) parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the training files for the CoNLL-2003 NER task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written.", ) # Other parameters parser.add_argument('--markup', default='bios', type=str, choices=['bios', 'bio']) parser.add_argument('--loss_type', default='ce', type=str, choices=['lsr', 'focal', 'ce']) parser.add_argument( "--labels", default="", type=str, help= "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.", ) parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help= "Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--train_max_seq_length", default=128, type=int, help= "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--eval_max_seq_length", default=512, type=int, help= "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Whether to run evaluation during training at each logging step.", ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.01, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--max_steps", default=-1, type=int, help= "If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training." ) parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help= "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument( '--predict_all_checkpoints', action="store_true", help= "Predict all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument("--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory") parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--fp16", action="store_true", help= "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") args = parser.parse_args() args.output_dir = args.output_dir + '{}'.format(args.model_type) if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) init_logger(log_file=args.output_dir + '/{}-{}-{}.log'.format( args.model_type, args.task_name, time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime()))) if os.path.exists(args.output_dir) and os.listdir( args.output_dir ) and args.do_train and not args.overwrite_output_dir: raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome." .format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed seed_everything(args.seed) # Prepare NER task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() label_list = processor.get_labels() args.id2label = {i: label for i, label in enumerate(label_list)} args.label2id = {label: i for i, label in enumerate(label_list)} num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, loss_type=args.loss_type, cache_dir=args.cache_dir if args.cache_dir else None, soft_label=True) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config) if args.local_rank == 0: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='train') global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = (model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_vocabulary(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) #Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))) logging.getLogger("pytorch_transformers.modeling_utils").setLevel( logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split( "-")[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split( '/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) if global_step: result = { "{}_{}".format(global_step, k): v for k, v in result.items() } results.update(result) output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: for key in sorted(results.keys()): writer.write("{} = {}\n".format(key, str(results[key]))) if args.do_predict and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) checkpoints = [args.output_dir] if args.predict_all_checkpoints > 0: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) logging.getLogger("transformers.modeling_utils").setLevel( logging.WARN) # Reduce logging checkpoints = [ x for x in checkpoints if x.split('-')[-1] == str(args.predict_checkpoints) ] logger.info("Predict the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: prefix = checkpoint.split( '/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) predict(args, model, tokenizer, prefix=prefix)
def main(): parser = ArgumentParser() ## Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the .tsv files (or other data files) for the task." ) parser.add_argument("--config_path", default=None, type=str, required=True) parser.add_argument("--vocab_path", default=None, type=str, required=True) parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written." ) parser.add_argument("--model_path", default='', type=str) parser.add_argument('--data_name', default='albert', type=str) parser.add_argument( "--file_num", type=int, default=10, help="Number of dynamic masking to pregenerate (with different masks)") parser.add_argument( "--reduce_memory", action="store_true", help= "Store training data as on-disc memmaps to massively reduce memory usage" ) parser.add_argument("--epochs", type=int, default=4, help="Number of epochs to train for") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument('--num_eval_steps', default=100) parser.add_argument('--num_save_steps', default=200) parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument("--weight_decay", default=0.01, type=float, help="Weight deay if we apply some.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument("--train_batch_size", default=4, type=int, help="Total batch size for training.") parser.add_argument( '--loss_scale', type=float, default=0, help= "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Linear warmup over warmup_steps.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument('--max_grad_norm', default=1.0, type=float) parser.add_argument("--learning_rate", default=0.00176, type=float, help="The initial learning rate for Adam.") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--fp16_opt_level', type=str, default='O2', help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument( '--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") args = parser.parse_args() args.data_dir = Path(args.data_dir) args.output_dir = Path(args.output_dir) pregenerated_data = args.data_dir / "corpus/train" init_logger(log_file=str(args.output_dir / "train_albert_model.log")) assert pregenerated_data.is_dir(), \ "--pregenerated_data should point to the folder of files made by prepare_lm_data_mask.py!" samples_per_epoch = 0 for i in range(args.file_num): data_file = pregenerated_data / f"{args.data_name}_file_{i}.json" metrics_file = pregenerated_data / f"{args.data_name}_file_{i}_metrics.json" if data_file.is_file() and metrics_file.is_file(): metrics = json.loads(metrics_file.read_text()) samples_per_epoch += metrics['num_training_examples'] else: if i == 0: exit("No training data was found!") print( f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})." ) print( "This script will loop over the available data, but training diversity may be negatively impacted." ) break logger.info(f"samples_per_epoch: {samples_per_epoch}") if args.local_rank == -1 or args.no_cuda: device = torch.device(f"cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) args.n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info( f"device: {device} , distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}, " f"share_type: {args.share_type}") if args.gradient_accumulation_steps < 1: raise ValueError( f"Invalid gradient_accumulation_steps parameter: {args.gradient_accumulation_steps}, should be >= 1" ) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps seed_everything(args.seed) tokenizer = BertTokenizer.from_pretrained(args.vocab_path, do_lower_case=args.do_lower_case) total_train_examples = samples_per_epoch * args.epochs num_train_optimization_steps = int(total_train_examples / args.train_batch_size / args.gradient_accumulation_steps) if args.local_rank != -1: num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size( ) args.warmup_steps = int(num_train_optimization_steps * args.warmup_proportion) bert_config = AlbertConfig.from_pretrained(args.config_path, share_type=args.share_type) model = AlbertForPreTraining(config=bert_config) if args.model_path: model = AlbertForPreTraining.from_pretrained(args.model_path) model.to(device) # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] optimizer = AdamW(params=optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=num_train_optimization_steps) # optimizer = Lamb(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) if args.n_gpu > 1: model = torch.nn.DataParallel(model) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank) global_step = 0 mask_metric = LMAccuracy() sop_metric = LMAccuracy() tr_mask_acc = AverageMeter() tr_sop_acc = AverageMeter() tr_loss = AverageMeter() tr_mask_loss = AverageMeter() tr_sop_loss = AverageMeter() loss_fct = CrossEntropyLoss(ignore_index=-1) train_logs = {} logger.info("***** Running training *****") logger.info(f" Num examples = {total_train_examples}") logger.info(f" Batch size = {args.train_batch_size}") logger.info(f" Num steps = {num_train_optimization_steps}") logger.info(f" warmup_steps = {args.warmup_steps}") start_time = time.time() seed_everything(args.seed) # Added here for reproducibility for epoch in range(args.epochs): for idx in range(args.file_num): epoch_dataset = PregeneratedDataset( file_id=idx, training_path=pregenerated_data, tokenizer=tokenizer, reduce_memory=args.reduce_memory, data_name=args.data_name) if args.local_rank == -1: train_sampler = RandomSampler(epoch_dataset) else: train_sampler = DistributedSampler(epoch_dataset) train_dataloader = DataLoader(epoch_dataset, sampler=train_sampler, batch_size=args.train_batch_size) model.train() nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate(train_dataloader): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch outputs = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask) prediction_scores = outputs[0] seq_relationship_score = outputs[1] masked_lm_loss = loss_fct( prediction_scores.view(-1, bert_config.vocab_size), lm_label_ids.view(-1)) next_sentence_loss = loss_fct( seq_relationship_score.view(-1, 2), is_next.view(-1)) loss = masked_lm_loss + next_sentence_loss mask_metric(logits=prediction_scores.view( -1, bert_config.vocab_size), target=lm_label_ids.view(-1)) sop_metric(logits=seq_relationship_score.view(-1, 2), target=is_next.view(-1)) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() nb_tr_steps += 1 tr_mask_acc.update(mask_metric.value(), n=input_ids.size(0)) tr_sop_acc.update(sop_metric.value(), n=input_ids.size(0)) tr_loss.update(loss.item(), n=1) tr_mask_loss.update(masked_lm_loss.item(), n=1) tr_sop_loss.update(next_sentence_loss.item(), n=1) if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) scheduler.step() optimizer.step() optimizer.zero_grad() global_step += 1 if global_step % args.num_eval_steps == 0: now = time.time() eta = now - start_time if eta > 3600: eta_format = ('%d:%02d:%02d' % (eta // 3600, (eta % 3600) // 60, eta % 60)) elif eta > 60: eta_format = '%d:%02d' % (eta // 60, eta % 60) else: eta_format = '%ds' % eta train_logs['loss'] = tr_loss.avg train_logs['mask_acc'] = tr_mask_acc.avg train_logs['sop_acc'] = tr_sop_acc.avg train_logs['mask_loss'] = tr_mask_loss.avg train_logs['sop_loss'] = tr_sop_loss.avg show_info = f'[Training]:[{epoch}/{args.epochs}]{global_step}/{num_train_optimization_steps} ' \ f'- ETA: {eta_format}' + "-".join( [f' {key}: {value:.4f} ' for key, value in train_logs.items()]) logger.info(show_info) tr_mask_acc.reset() tr_sop_acc.reset() tr_loss.reset() tr_mask_loss.reset() tr_sop_loss.reset() start_time = now if global_step % args.num_save_steps == 0: if args.local_rank in [-1, 0] and args.num_save_steps > 0: # Save model checkpoint output_dir = args.output_dir / f'lm-checkpoint-{global_step}' if not output_dir.exists(): output_dir.mkdir() # save model model_to_save = model.module if hasattr( model, 'module' ) else model # Take care of distributed/parallel training model_to_save.save_pretrained(str(output_dir)) torch.save(args, str(output_dir / 'training_args.bin')) logger.info("Saving model checkpoint to %s", output_dir) # save config output_config_file = output_dir / CONFIG_NAME with open(str(output_config_file), 'w') as f: f.write(model_to_save.config.to_json_string()) # save vocab tokenizer.save_vocabulary(output_dir)
def main(): parser = ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True) parser.add_argument("--vocab_path", default=None, type=str, required=True) parser.add_argument("--output_dir", default=None, type=str, required=True) parser.add_argument('--data_name', default='albert', type=str) parser.add_argument("--do_data", default=False, action='store_true') parser.add_argument("--do_split", default=False, action='store_true') parser.add_argument("--do_lower_case", default=False, action='store_true') parser.add_argument('--seed', default=42, type=int) parser.add_argument("--line_per_file", default=1000000000, type=int) parser.add_argument("--file_num", type=int, default=10, help="Number of dynamic masking to pregenerate (with different masks)") parser.add_argument("--max_seq_len", type=int, default=128) parser.add_argument("--short_seq_prob", type=float, default=0.1, help="Probability of making a short sentence as a training example") parser.add_argument("--masked_lm_prob", type=float, default=0.15, help="Probability of masking each token for the LM task") parser.add_argument("--max_predictions_per_seq", type=int, default=20, # 128 * 0.15 help="Maximum number of tokens to mask in each sequence") args = parser.parse_args() seed_everything(args.seed) args.data_dir = Path(args.data_dir) if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) init_logger(log_file=args.output_dir +"pregenerate_training_data.log") logger.info("pregenerate training data parameters:\n %s", args) tokenizer = BertTokenizer(vocab_file=args.vocab_path, do_lower_case=args.do_lower_case) # split big file if args.do_split: corpus_path = args.data_dir / "corpus/corpus.txt" split_save_path = args.data_dir / "/corpus/train" if not split_save_path.exists(): split_save_path.mkdir(exist_ok=True) line_per_file = args.line_per_file command = f'split -a 4 -l {line_per_file} -d {corpus_path} {split_save_path}/shard_' os.system(f"{command}") # generator train data if args.do_data: data_path = args.data_dir / "corpus/train" files = sorted([f for f in data_path.parent.iterdir() if f.exists() and '.txt' in str(f)]) for idx in range(args.file_num): logger.info(f"pregenetate {args.data_name}_file_{idx}.json") save_filename = data_path / f"{args.data_name}_file_{idx}.json" num_instances = 0 with save_filename.open('w') as fw: for file_idx in range(len(files)): file_path = files[file_idx] file_examples = create_training_instances(input_file=file_path, tokenizer=tokenizer, max_seq_len=args.max_seq_len, short_seq_prob=args.short_seq_prob, masked_lm_prob=args.masked_lm_prob, max_predictions_per_seq=args.max_predictions_per_seq) file_examples = [json.dumps(instance) for instance in file_examples] for instance in file_examples: fw.write(instance + '\n') num_instances += 1 metrics_file = data_path / f"{args.data_name}_file_{idx}_metrics.json" print(f"num_instances: {num_instances}") with metrics_file.open('w') as metrics_file: metrics = { "num_training_examples": num_instances, "max_seq_len": args.max_seq_len } metrics_file.write(json.dumps(metrics))
callback=padding) for i, (x, y) in enumerate(train_dataloader): # 打印Utterance的形状 logger.info(f"The shape of utternace is {x[constants.UTTRS].shape}") if i == 0: break return train_dataloader, valid_dataloader if __name__ == "__main__": logger.info( f"----------------------- 训练 {name.upper()}: {time.ctime()} --------------------------" ) seed_everything(seed) logger.info( f"使用参数为 —— \n L2_REG: {l2_reg} | Epochs: {epochs} | Batch Size: {batch_size} | LR: {lr} | " f"Uttr_Len: {fixed_length_uttr} | Resp_Len: {fixed_length_resp} | Turn: {fixed_length_turn} | Type: {data_type.upper()}" ) train_processed_file = train_file[0:-4] + "_albert_processed.csv" valid_processed_file = valid_file[0:-4] + "_albert_processed.csv" try: logger.info("加载预处理好的数据") from ast import literal_eval train_data = pd.read_csv(Path(data_dir) / train_processed_file) valid_data = pd.read_csv(Path(data_dir) / valid_processed_file) ## 将这两列转换回list类型 logger.info(f"将{constants.UTTRS}和{constants.RESP}转换成list")