num = krui.getNextSuccUnit()[0] print "Deleting a few links" krui.getFirstSuccUnit(9) krui.deleteLink() krui.getFirstSuccUnit(1) krui.getNextSuccUnit() krui.deleteAllInputLinks() krui.getNextSuccUnit() krui.deleteAllOutputLinks() krui.saveNet('foo.net','Testnet') print krui.getLearnFunc() #krui.setLearnFunc('RBF-DDA') print krui.getInitialisationFunc() print krui.getUpdateFunc() patset = krui.loadNewPatterns('encoder.pat') print "Patternset", patset, "loaded." print "Old pattern number:", krui.getPatternNo() # fiddle around with some patterns krui.setPatternNo(8) krui.deletePattern() krui.setPatternNo(5) krui.modifyPattern() krui.setPatternNo(7) krui.showPattern(krui.OUTPUT_OUT) krui.newPattern() krui.shufflePatterns(1) krui.shuffleSubPatterns(1) krui.saveNewPatterns('foo.pat',patset) krui.setPatternNo(1) (setinfo, patinfo) = krui.GetPatInfo()
util.registerFunction(outtestfunc, "outtestfunc", krui.OUT_FUNC, 0, 0) util.registerFunction(outtestfunc2, "outtestfunc2", krui.OUT_FUNC, 0, 0) util.registerFunction(acttest, "acttest", krui.ACT_FUNC, 0, 0) util.registerFunction(actderivtest, "acttest", krui.ACT_DERIV_FUNC, 0, 0) util.registerFunction(actderiv2test, "acttest", krui.ACT_2_DERIV_FUNC, 0, 0) newnum = krui.getNoOfFunctions() print "After adding:", newnum for num in range(oldnum - 2, newnum + 1): print "Function number", num, "Info:", krui.getFuncInfo(num) print krui.loadNet('encoder.net') for num in [1, 10, 19]: krui.setUnitOutFunc(num, "outtestfunc") for num in [2, 11, 18]: krui.setUnitOutFunc(num, "outtestfunc2") for num in [3, 9, 17]: krui.setUnitActFunc(num, "acttest") krui.loadNewPatterns('encoder.pat') krui.DefTrainSubPat() print "Learning one pattern" krui.learnSinglePattern(1, (0.2, 0)) krui.setUnitDefaults(1.0, 0, krui.INPUT, 0, 1, "acttest", "outtestfunc") newunit = krui.createDefaultUnit() print "New unit:", newunit print "Act func name:", krui.getUnitActFuncName(newunit) krui.deleteUnitList(newunit) krui.saveNet("tmp.net", "testnet") print "finished"
num = krui.getNextSuccUnit()[0] print "Deleting a few links" krui.getFirstSuccUnit(9) krui.deleteLink() krui.getFirstSuccUnit(1) krui.getNextSuccUnit() krui.deleteAllInputLinks() krui.getNextSuccUnit() krui.deleteAllOutputLinks() krui.saveNet('foo.net', 'Testnet') print krui.getLearnFunc() #krui.setLearnFunc('RBF-DDA') print krui.getInitialisationFunc() print krui.getUpdateFunc() patset = krui.loadNewPatterns('encoder.pat') print "Patternset", patset, "loaded." print "Old pattern number:", krui.getPatternNo() # fiddle around with some patterns krui.setPatternNo(8) krui.deletePattern() krui.setPatternNo(5) krui.modifyPattern() krui.setPatternNo(7) krui.showPattern(krui.OUTPUT_OUT) krui.newPattern() krui.shufflePatterns(1) krui.shuffleSubPatterns(1) krui.saveNewPatterns('foo.pat', patset) krui.setPatternNo(1) (setinfo, patinfo) = krui.GetPatInfo()
#!/usr/bin/python # shows the coordinates of the winner neurons for the som_cube example from snns import krui, util krui.loadNet('som_cube.net') krui.loadNewPatterns('som_cube.pat') patnum = krui.getNoOfPatterns() units = krui.getNoOfUnits() for pat in range(1,patnum+1) : krui.setPatternNo(pat) krui.showPattern(krui.OUTPUT_NOTHING) krui.updateNet(()) results = [] for unit in range(1,units+1) : if krui.getUnitTType(unit) == krui.HIDDEN : results.append((krui.getUnitActivation(unit),unit)) bestact, bestunit = min(results) rawpos = krui.getUnitPosition(bestunit)[:2] print "Pattern", pat, "Act", bestact, "Unit", bestunit, print "Grid Position", (rawpos[0]-4, rawpos[1])
util.registerFunction(outtestfunc2,"outtestfunc2",krui.OUT_FUNC,0,0) util.registerFunction(acttest,"acttest",krui.ACT_FUNC,0,0) util.registerFunction(actderivtest,"acttest",krui.ACT_DERIV_FUNC,0,0) util.registerFunction(actderiv2test,"acttest",krui.ACT_2_DERIV_FUNC,0,0) newnum = krui.getNoOfFunctions() print "After adding:", newnum for num in range(oldnum - 2, newnum + 1) : print "Function number", num, "Info:",krui.getFuncInfo(num) print krui.loadNet('encoder.net') for num in [1,10,19] : krui.setUnitOutFunc(num,"outtestfunc") for num in [2,11,18] : krui.setUnitOutFunc(num,"outtestfunc2") for num in [3,9,17] : krui.setUnitActFunc(num,"acttest") krui.loadNewPatterns('encoder.pat') krui.DefTrainSubPat() print "Learning one pattern" krui.learnSinglePattern(1,(0.2,0)) krui.setUnitDefaults(1.0,0,krui.INPUT,0,1,"acttest","outtestfunc") newunit = krui.createDefaultUnit() print "New unit:", newunit print "Act func name:", krui.getUnitActFuncName(newunit) krui.deleteUnitList(newunit) krui.saveNet("tmp.net","testnet") print "finished"