예제 #1
0
    def lf_empirical_probs(self, Y: np.ndarray, k: int) -> np.ndarray:
        """Estimate conditional probability tables for each LF.

        Computes conditional probability tables, P(L | Y), for each LF using
        the provided true labels Y.

        Parameters
        ----------
        Y
            The n-dim array of true labels in {1,...,k}
        k
            The cardinality i.e. number of classes

        Returns
        -------
        np.ndarray
            An m x (k+1) x k np.ndarray representing the m (k+1) x k conditional probability
            tables P_i, where P_i[l,y] represents P(LF_i = l | Y = y) empirically calculated
        """
        n, m = self.L.shape

        Y = to_int_label_array(Y)

        # Compute empirical conditional probabilities
        # Note: Can do this more efficiently...
        P = np.zeros((m, k + 1, k))
        for y in range(k):
            is_y = np.where(Y == y, 1, 0)
            for j, l in product(range(m), range(-1, k)):
                P[j, l + 1,
                  y] = np.where(self.L[:, j] == l, 1, 0) @ is_y / is_y.sum()
        return P
예제 #2
0
def get_label_buckets(*y: np.ndarray) -> Dict[Tuple[int, ...], np.ndarray]:
    """Return data point indices bucketed by label combinations.

    Parameters
    ----------
    *y
        A list of np.ndarray of (int) labels

    Returns
    -------
    Dict[Tuple[int, ...], np.ndarray]
        A mapping of each label bucket to a NumPy array of its corresponding indices

    Example
    -------
    A common use case is calling ``buckets = label_buckets(Y_gold, Y_pred)`` where
    ``Y_gold`` is a set of gold (i.e. ground truth) labels and ``Y_pred`` is a
    corresponding set of predicted labels.

    >>> Y_gold = np.array([1, 1, 1, 0])
    >>> Y_pred = np.array([1, 1, -1, -1])
    >>> buckets = get_label_buckets(Y_gold, Y_pred)

    The returned ``buckets[(i, j)]`` is a NumPy array of data point indices with
    true label i and predicted label j.

    More generally, the returned indices within each bucket refer to the order of the
    labels that were passed in as function arguments.

    >>> buckets[(1, 1)]  # true positives
    array([0, 1])
    >>> (1, 0) in buckets  # false positives
    False
    >>> (0, 1) in buckets  # false negatives
    False
    >>> (0, 0) in buckets  # true negatives
    False
    >>> buckets[(1, -1)]  # abstained positives
    array([2])
    >>> buckets[(0, -1)]  # abstained negatives
    array([3])
    """
    buckets: DefaultDict[Tuple[int, int], List[int]] = defaultdict(list)
    y_flat = list(map(lambda x: to_int_label_array(x, flatten_vector=True), y))
    if len(set(map(len, y_flat))) != 1:
        raise ValueError("Arrays must all have the same number of elements")
    for i, labels in enumerate(zip(*y_flat)):
        buckets[labels].append(i)
    return {k: np.array(v) for k, v in buckets.items()}
예제 #3
0
    def test_to_int_label_array(self):
        X = np.array([[1], [0], [2.0]])
        Y_expected = np.array([1, 0, 2])
        Y = to_int_label_array(X, flatten_vector=True)
        np.testing.assert_array_equal(Y, Y_expected)

        Y = to_int_label_array(X, flatten_vector=False)
        Y_expected = np.array([[1], [0], [2]])
        np.testing.assert_array_equal(Y, Y_expected)

        X = np.array([[1], [0], [2.1]])
        with self.assertRaisesRegex(ValueError, "non-integer value"):
            to_int_label_array(X)

        X = np.array([[1, 0], [0, 1]])
        with self.assertRaisesRegex(ValueError, "1d np.array"):
            to_int_label_array(X, flatten_vector=True)
예제 #4
0
    def lf_empirical_accuracies(self, Y: np.ndarray) -> np.ndarray:
        """Compute empirical accuracy against a set of labels Y for each LF.

        Usually, Y represents development set labels.

        Parameters
        ----------
        Y
            [n] or [n, 1] np.ndarray of gold labels

        Returns
        -------
        numpy.ndarray
            Empirical accuracies for each LF
        """
        Y = to_int_label_array(Y)
        X = np.where(
            self.L == -1,
            0,
            np.where(self.L == np.vstack([Y] * self.L.shape[1]).T, 1, -1),
        )
        with np.errstate(divide="ignore", invalid="ignore"):
            return np.nan_to_num(0.5 * (X.sum(axis=0) /
                                        (self.L != -1).sum(axis=0) + 1))
예제 #5
0
def metric_score(
    golds: Optional[np.ndarray] = None,
    preds: Optional[np.ndarray] = None,
    probs: Optional[np.ndarray] = None,
    metric: str = "accuracy",
    filter_dict: Optional[Dict[str, List[int]]] = None,
    **kwargs: Any,
) -> float:
    """Evaluate a standard metric on a set of predictions/probabilities.

    Parameters
    ----------
    golds
        An array of gold (int) labels
    preds
        An array of (int) predictions
    probs
        An [n_datapoints, n_classes] array of probabilistic (float) predictions
    metric
        The name of the metric to calculate
    filter_dict
        A mapping from label set name to the labels that should be filtered out for
        that label set

    Returns
    -------
    float
        The value of the requested metric

    Raises
    ------
    ValueError
        The requested metric is not currently supported
    ValueError
        The user attempted to calculate roc_auc score for a non-binary problem
    """
    if metric not in METRICS:
        msg = f"The metric you provided ({metric}) is not currently implemented."
        raise ValueError(msg)

    # Print helpful error messages if golds or preds has invalid shape or type
    golds = to_int_label_array(golds) if golds is not None else None
    preds = to_int_label_array(preds) if preds is not None else None

    # Optionally filter out examples (e.g., abstain predictions or unknown labels)
    label_dict: Dict[str, Optional[np.ndarray]] = {
        "golds": golds,
        "preds": preds,
        "probs": probs,
    }
    if filter_dict:
        if set(filter_dict.keys()).difference(set(label_dict.keys())):
            raise ValueError(
                "filter_dict must only include keys in ['golds', 'preds', 'probs']"
            )
        # label_dict is overwritten from type Dict[str, Optional[np.ndarray]]
        # to Dict[str, np.ndarray]
        label_dict = filter_labels(label_dict, filter_dict)  # type: ignore

    # Confirm that required label sets are available
    func, label_names = METRICS[metric]
    for label_name in label_names:
        if label_dict[label_name] is None:
            raise ValueError(
                f"Metric {metric} requires access to {label_name}.")

    label_sets = [label_dict[label_name] for label_name in label_names]
    return func(*label_sets, **kwargs)