예제 #1
0
def test_coords():

    h, w = 800, 800
    height, width = h, w

    # Draw seed image

    cyan = np.full([h, w, 3], np.float64([(27, 56, 80)]) / 200)
    pink = np.full([h, w, 3], np.float64([175, 111, 127]) / 255)
    orange = np.full([h, w, 3], np.float64([239, 159, 95]) / 255)
    yellow = np.full([h, w, 3], np.float64([239, 207, 95]) / 255)

    colors = np.zeros([h, w, 3])

    def max_color(v):
        return np.maximum(colors, v)

    def sub_color(v):
        return colors * (1 - v)

    colors = max_color(create_circle(w, h, 0.37, [0.4, 0.5]) * cyan)
    colors = max_color(create_circle(w, h, 0.37, [0.6, 0.4]) * cyan)
    colors = max_color(create_circle(w, h, 0.27, [0.7, 0.6]) * cyan)
    colors = sub_color(create_circle(w, h, 0.35, [0.4, 0.5]))
    colors = sub_color(create_circle(w, h, 0.35, [0.6, 0.4]))
    colors = sub_color(create_circle(w, h, 0.25, [0.7, 0.6]))
    colors = max_color(create_circle(w, h, 0.01, [0.4, 0.5]) * orange)
    colors = max_color(create_circle(w, h, 0.01, [0.6, 0.4]) * pink)
    colors = max_color(create_circle(w, h, 0.01, [0.7, 0.6]) * yellow)

    colors = sn.linearize(colors)

    # Create generalized voronoi

    luma = sn.reshape(np.sum(colors, 2))
    coords = sn.generate_cpcf(luma != 0)
    voronoi = sn.dereference_cpcf(colors, coords)

    # Warp the voronoi

    warpx, warpy = width / 15, height / 15
    noise = sn.generate_fBm(width, height, 4, 4, 3)

    i, j = np.arange(width, dtype='i2'), np.arange(height, dtype='i2')
    coords = np.dstack(np.meshgrid(i, j, sparse=False))

    warpx = warpx * np.cos(noise * math.pi * 2)
    warpy = warpy * np.sin(noise * math.pi * 2)
    coords += np.int16(np.dstack([warpx, warpy]))

    coords[:, :, 0] = np.clip(coords[:, :, 0], 0, width - 1)
    coords[:, :, 1] = np.clip(coords[:, :, 1], 0, height - 1)
    warped = sn.dereference_cpcf(voronoi, coords)

    strip = [sn.resize(i, height=256) for i in (colors, voronoi, warped)]
    sn.show(sn.hstack(strip))
예제 #2
0
def test_udf():
    c0 = create_circle(200, 200, 0.3)
    c1 = create_circle(200, 200, 0.08, 0.8, 0.8)
    c0 = np.clip(c0 + c1, 0, 1)
    circles = snowy.add_border(c0, value=1)
    mask = circles != 0.0
    udf = snowy.unitize(snowy.generate_udf(mask))
    nx, ny = snowy.gradient(udf)
    grad = snowy.unitize(nx + ny)
    snowy.show(snowy.hstack([circles, udf, grad]))
예제 #3
0
def draw_quad():
    verts = np.array([[-0.67608007,  0.38439575,  3.70544936,  0., 0. ],
        [-0.10726266,  0.38439575,  2.57742041,  1., 0. ],
        [-0.10726266, -0.96069041,  2.57742041,  1., 1. ],
        [-0.67608007, -0.96069041,  3.70544936,  0., 1. ]])
    texture = snowy.load(qualify('../tests/texture.png'))
    target = np.full((1080, 1920, 4), (0.54, 0.54, 0.78, 1.00),
            dtype=np.float32)
    snowy.draw_polygon(target, texture, verts)
    target = snowy.resize(target[400:770, 700:1000], height = 256)
    texture = snowy.resize(texture, height = 256)
    quad = snowy.hstack([texture, target])
    snowy.export(quad, qualify('quad.png'))
    snowy.show(quad)
예제 #4
0
def test_gdf():
    "This is a (failed) effort to create a smoother distance field."
    c0 = create_circle(200, 200, 0.3)
    c1 = create_circle(200, 200, 0.08, 0.8, 0.8)
    c0 = np.clip(c0 + c1, 0, 1)
    circles = snowy.add_border(c0, value=1)
    circles = np.clip(snowy.blur(circles, radius=2), 0, 1)
    circles = np.clip(snowy.blur(circles, radius=2), 0, 1)
    source = (1.0 - circles) * 2000.0
    gdf = np.sqrt(snowy.generate_gdf(source))
    gdf = snowy.unitize(gdf)
    nx, ny = snowy.gradient(gdf)
    grad = snowy.unitize(nx + ny)
    snowy.show(snowy.hstack([circles, gdf, grad]))
예제 #5
0
def test_normals():
    isle = create_island(10)
    height, width, nchan = isle.shape

    occlusion = np.empty([height, width, 1])
    seconds = timeit.timeit(
        lambda: np.copyto(occlusion, sn.compute_skylight(isle)), number=1)
    print(f'\ncompute_skylight took {seconds} seconds')

    normals = np.empty([height - 1, width - 1, 3])
    seconds = timeit.timeit(
        lambda: np.copyto(normals, sn.compute_normals(isle)), number=1)
    print(f'\ncompute_normals took {seconds} seconds')

    normals = sn.resize(normals, 750, 512)

    # Flatten the normals according to landmass versus sea.
    normals += np.float64([0, 0, 100]) * np.where(isle < 0.0, 1.0, 0.005)
    normals /= sn.reshape(np.sqrt(np.sum(normals * normals, 2)))

    # Compute the lambertian diffuse factor
    lightdir = np.float64([0.2, -0.2, 1])
    lightdir /= np.linalg.norm(lightdir)
    df = np.clip(np.sum(normals * lightdir, 2), 0, 1)
    df = sn.reshape(df)
    df *= occlusion

    # Apply color LUT
    gradient_image = sn.resize(sn.load(path('terrain.png')),
                               width=1024)[:, :, :3]

    def applyColorGradient(elevation):
        xvals = np.arange(1024)
        yvals = gradient_image[0]
        apply_lut = interpolate.interp1d(xvals, yvals, axis=0)
        el = np.clip(1023 * elevation, 0, 1023)
        return apply_lut(sn.unshape(el))

    albedo = applyColorGradient(isle * 0.5 + 0.5)
    albedo *= df

    # Visualize the lighting layers
    normals = 0.5 * (normals + 1.0)
    isle = np.dstack([isle, isle, isle])
    occlusion = np.dstack([occlusion, occlusion, occlusion])
    df = np.dstack([df, df, df])
    island_strip = sn.resize(sn.hstack([occlusion, normals, df, albedo]),
                             height=256)
    sn.save(island_strip, 'docs/island_strip.png')
    sn.show(island_strip)
예제 #6
0
파일: test_snowy.py 프로젝트: wsf1990/snowy
def test_tileable():
    n = snowy.generate_noise(200, 400, frequency=4, seed=42, wrapx=True)
    n = 0.5 + 0.5 * np.sign(n) - n
    n = np.hstack([n, n])
    gold = snowy.resize(n, 200, 200)

    n = snowy.generate_noise(20, 40, frequency=4, seed=42, wrapx=True)
    n = 0.5 + 0.5 * np.sign(n) - n
    n = snowy.resize(n, 100, 200)
    bad = np.hstack([n, n])

    n = snowy.generate_noise(20, 40, frequency=4, seed=42, wrapx=True)
    n = 0.5 + 0.5 * np.sign(n) - n
    n = snowy.resize(n, 100, 200, wrapx=True)
    good = np.hstack([n, n])

    snowy.show(snowy.hstack([gold, bad, good], 2, .7))
예제 #7
0
            heading.contents[0].replace_with(anchor)
    open(resultfile, 'w').write(str(soup))

generate_page(qualify('index.md'), qualify('index.html'), False)
generate_page(qualify('reference.md'), qualify('reference.html'), True)

# Test rotations and flips

gibbons = snowy.load(qualify('gibbons.jpg'))
gibbons = snowy.resize(gibbons, width=gibbons.shape[1] // 5)
gibbons90 = snowy.rotate(gibbons, 90)
gibbons180 = snowy.rotate(gibbons, 180)
gibbons270 = snowy.rotate(gibbons, 270)
hflipped = snowy.hflip(gibbons)
vflipped = snowy.vflip(gibbons)
snowy.export(snowy.hstack([gibbons, gibbons180, vflipped],
    border_width=4, border_value=[0.5,0,0]), qualify("xforms.png"))

# Test noise generation

n = snowy.generate_noise(100, 100, frequency=4, seed=42, wrapx=True)
n = np.hstack([n, n])
n = 0.5 + 0.5 * n
snowy.show(n)
snowy.export(n, qualify('noise.png'))

# First try minifying grayscale

gibbons = snowy.load(qualify('snowy.jpg'))
gibbons = np.swapaxes(gibbons, 0, 2)
gibbons = np.swapaxes(gibbons[0], 0, 1)
gibbons = snowy.reshape(gibbons)
예제 #8
0
파일: snowy.py 프로젝트: Aurametrix/Alg
import snowy

source = snowy.open('poodle.png')
source = snowy.resize(source, height=200)
blurry = snowy.blur(source, radius=4.0)
snowy.save(snowy.hstack([source, blurry]), 'diptych.png')

# This snippet does a resize, then a blur, then horizontally concatenates the two images

parrot = snowy.load('parrot.png')
height, width = parrot.shape[:2]
nearest = snowy.resize(parrot, width * 6, filter=snowy.NEAREST) 
mitchell = snowy.resize(parrot, width * 6)
snowy.show(snowy.hstack([nearest, mitchell]))

#  This snippet first magnifies an image using a nearest-neighbor filter, then using the default Mitchell filter.

parrot = snowy.load('parrot.png')
height, width = parrot.shape[:2]
nearest = snowy.resize(parrot, width * 6, filter=snowy.NEAREST) 
mitchell = snowy.resize(parrot, width * 6)
snowy.show(snowy.hstack([nearest, mitchell]))
예제 #9
0
friction = 0.1
clumpy(f'pendulum_phase {dim} {friction} 1 5 field.npy')
clumpy(f'bridson_points {dim} {spacing} 0 pts.npy')
clumpy('advect_points pts.npy field.npy ' +
       f'{step_size} {kernel_size} {decay} {nframes} anim1.npy')

friction = 0.9
clumpy(f'pendulum_phase {dim} {friction} 1 5 field.npy')
clumpy(f'bridson_points {dim} {spacing} 0 pts.npy')
clumpy('advect_points pts.npy field.npy ' +
       f'{step_size} {kernel_size} {decay} {nframes} anim2.npy')

import imageio
writer = imageio.get_writer('anim.mp4', fps=60)
for i in tqdm(range(0, nframes, skip)):

    im1 = snowy.reshape(np.load("{:03}anim1.npy".format(i)))
    im1 = snowy.resize(im1, 960 - 6, 1088 - 8)

    im2 = snowy.reshape(np.load("{:03}anim2.npy".format(i)))
    im2 = snowy.resize(im2, 960 - 6, 1088 - 8)

    im = np.uint8(255.0 - snowy.hstack([im1, im2], border_width=4))
    writer.append_data(im)

writer.close()
print('Generated anim.mp4')

system('rm *.npy')