def test_subscription_worker_consistent( subscription_data: SubscriptionData) -> None: state.set_config("event_subscription_non_consistent_sample_rate", 1) broker: Broker[SubscriptionTaskResult] = Broker(MemoryMessageStorage(), TestingClock()) result_topic = Topic("subscription-results") broker.create_topic(result_topic, partitions=1) frequency = timedelta(minutes=1) evaluations = 1 subscription = Subscription( SubscriptionIdentifier(PartitionId(0), uuid1()), subscription_data, ) store = DummySubscriptionDataStore() store.create(subscription.identifier.uuid, subscription.data) metrics = TestingMetricsBackend() dataset = get_dataset("events") worker = SubscriptionWorker( dataset, ThreadPoolExecutor(), { 0: SubscriptionScheduler(store, PartitionId(0), timedelta(), DummyMetricsBackend(strict=True)) }, broker.get_producer(), result_topic, metrics, ) now = datetime(2000, 1, 1) tick = Tick( offsets=Interval(0, 1), timestamps=Interval(now - (frequency * evaluations), now), ) worker.process_message(Message(Partition(Topic("events"), 0), 0, tick, now)) time.sleep(0.1) assert (len([ m for m in metrics.calls if isinstance(m, Increment) and m.name == "consistent" ]) == 1)
def test_subscription_worker(broker: Broker[SubscriptionTaskResult], ) -> None: result_topic = Topic("subscription-results") broker.create_topic(result_topic, partitions=1) frequency = timedelta(minutes=1) evaluations = 3 subscription = Subscription( SubscriptionIdentifier(PartitionId(0), uuid1()), SubscriptionData( project_id=1, conditions=[], aggregations=[["count()", "", "count"]], time_window=timedelta(minutes=60), resolution=frequency, ), ) store = DummySubscriptionDataStore() store.create(subscription.identifier.uuid, subscription.data) metrics = DummyMetricsBackend(strict=True) dataset = get_dataset("events") worker = SubscriptionWorker( dataset, ThreadPoolExecutor(), { 0: SubscriptionScheduler(store, PartitionId(0), timedelta(), metrics) }, broker.get_producer(), result_topic, metrics, ) now = datetime(2000, 1, 1) tick = Tick( offsets=Interval(0, 1), timestamps=Interval(now - (frequency * evaluations), now), ) result_futures = worker.process_message( Message(Partition(Topic("events"), 0), 0, tick, now)) assert result_futures is not None and len(result_futures) == evaluations # Publish the results. worker.flush_batch([result_futures]) # Check to make sure the results were published. # NOTE: This does not cover the ``SubscriptionTaskResultCodec``! consumer = broker.get_consumer("group") consumer.subscribe([result_topic]) for i in range(evaluations): timestamp = now - frequency * (evaluations - i) message = consumer.poll() assert message is not None assert message.partition.topic == result_topic task, future = result_futures[i] future_result = request, result = future.result() assert message.payload.task.timestamp == timestamp assert message.payload == SubscriptionTaskResult(task, future_result) # NOTE: The time series extension is folded back into the request # body, ideally this would reference the timeseries options in # isolation. assert (request.body.items() > { "from_date": (timestamp - subscription.data.time_window).isoformat(), "to_date": timestamp.isoformat(), }.items()) assert result == { "meta": [{ "name": "count", "type": "UInt64" }], "data": [{ "count": 0 }], }
def test_subscription_worker(subscription_data: SubscriptionData) -> None: broker: Broker[SubscriptionTaskResult] = Broker(MemoryMessageStorage(), TestingClock()) result_topic = Topic("subscription-results") broker.create_topic(result_topic, partitions=1) frequency = timedelta(minutes=1) evaluations = 3 subscription = Subscription( SubscriptionIdentifier(PartitionId(0), uuid1()), subscription_data, ) store = DummySubscriptionDataStore() store.create(subscription.identifier.uuid, subscription.data) metrics = DummyMetricsBackend(strict=True) dataset = get_dataset("events") worker = SubscriptionWorker( dataset, ThreadPoolExecutor(), { 0: SubscriptionScheduler(store, PartitionId(0), timedelta(), metrics) }, broker.get_producer(), result_topic, metrics, ) now = datetime(2000, 1, 1) tick = Tick( offsets=Interval(0, 1), timestamps=Interval(now - (frequency * evaluations), now), ) result_futures = worker.process_message( Message(Partition(Topic("events"), 0), 0, tick, now)) assert result_futures is not None and len(result_futures) == evaluations # Publish the results. worker.flush_batch([result_futures]) # Check to make sure the results were published. # NOTE: This does not cover the ``SubscriptionTaskResultCodec``! consumer = broker.get_consumer("group") consumer.subscribe([result_topic]) for i in range(evaluations): timestamp = now - frequency * (evaluations - i) message = consumer.poll() assert message is not None assert message.partition.topic == result_topic task, future = result_futures[i] future_result = request, result = future.result() assert message.payload.task.timestamp == timestamp assert message.payload == SubscriptionTaskResult(task, future_result) # NOTE: The time series extension is folded back into the request # body, ideally this would reference the timeseries options in # isolation. from_pattern = FunctionCall( String(ConditionFunctions.GTE), ( Column(None, String("timestamp")), Literal(Datetime(timestamp - subscription.data.time_window)), ), ) to_pattern = FunctionCall( String(ConditionFunctions.LT), (Column(None, String("timestamp")), Literal(Datetime(timestamp))), ) condition = request.query.get_condition() assert condition is not None conditions = get_first_level_and_conditions(condition) assert any([from_pattern.match(e) for e in conditions]) assert any([to_pattern.match(e) for e in conditions]) assert result == { "meta": [{ "name": "count", "type": "UInt64" }], "data": [{ "count": 0 }], }